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Preface

The idea of using variational/feasibility constraints in inverse problems and tomography
is new and relatively unexplored. This approach has far-reaching consequences with both
theoretical and practical import, including rigorous results on convexity properties of the so-
lution sets and stability of nonlinear reconstruction algorithms. The idea arose at Lawrence
Livermore National Laboratory about four years ago and the extent to which it has been
understood and applied at present was discussed in my lectures at MIT/ERL in July, 1990.
These Lecture Notes attempt to supply both a summary of the lectures for those who were
not able to attend and also an expansion on some of the details that were left out for lack
of time. I want to emphasize that these were research lectures, on topics that were still
developing then and are continuing to develop.

One major difference between the Notes and the lectures is that I have decided not to
include any color reproductions in the Notes. That decision has in turn led me to leave
out discussion of any actual reconstructions on synthetic or real data obtained using these
methods, some of which can be found in the published or to-be-published references. In any
case, the excitement of seeing these reconstructions performed in real time on color graphics
workstations (as we did at MIT to supplement the lectures) is not likely to be captured on
paper, so I have not tried. If there is sufficient demand, I will expand these Notes in the the
future to include a variety of sample reconstructions to illustrate the various conclusions in
the analysis.

James G. Berryman
November, 1990
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Lecture Notes on

Nonlinear Inversion and Tomography

1 Introduction to the Traveltime Tomography Problem

The main topic of these lectures is seismic traveltime tomography in 2-D and 3-D hetero-
geneous media. Our main problem is to infer the (isotropic) P-wave slowness (reciprocal
velocity) distribution of a medium, given a set of observed first-arrival traveltimes between
sources and receivers of known location within the medium. This problem is typical of
borehole-to-borehole seismic tomography in oil field applications. We will also consider the
problem of inverting for wave slowness when the absolute traveltimes are not known, as is
expected to be the case in earthquake seismology.

1.1 Slowness Models

We will consider three kinds of slowness models. Sometimes we will allow the slowness
to be a general function of position, 8(Z). However, we will often make one of two more
restrictive assumptions that (i) the model comprises homogeneous blocks, or cells, with s;
then denoting the slowness value of the jth cell, or (1#1) the model is composed of a grid
with values of slowness assigned at the grid points with some interpolation scheme to assign
the values between grid points. Of course, we can think of blocks of constant slowness as a
special case of continuous models, or continuous models as a limiting case of blocks as the
blocks become infinitesimal.

When it is not important which type of slowness model is involved, we will refer to the
model abstractly as a vector 8 in a vector space S. For a block model with n blocks we have
S = R", the n-dimensional Euclidean vector space. (R denotes the set of real numbers.)
A continuous slowness model, on the other hand, is an element of a function space, e.g.,
S = C(R3), the set of continuous functions of three real variables.

1.2 Fermat’s Principle and Traveltime Functionals

The traveltime of a seismic wave is the integral of slowness along a ray path connecting
the source and receiver. To make this more precise, we will define two functionals! for
traveltime.

Let P denote an arbitrary path connecting a given source and receiver in a slowness
model 8. We will refer to P as a trial ray path. We define a functional 7F which yields the
traveltime along P. Letting s be the continuous slowness distribution s(Z), we have

P(s) = /P s(2)dI”, (1)

1A functional is a function which maps a function space or a vector space to the set of real numbers.



where dIf denotes the infinitesimal distance along the path P.

Fermat’s principle states that the correct ray path between two points is the one of least
overall traveltime, i.e., it minimizes? 77 (8) with respect to P.

Let us define 7* to be the functional that yields the traveltime along the Fermat (least-
time) ray path. Fermat’s principle then states

» _ : P
)= B, ) @)

where Paths denotes the set of all continuous paths connecting the given source and
receiver.® The particular path that produces the minimum in (2) is denoted P*. If more
than one path produces the same minimum traveltime value, then P* denotes any particular
member in this set of minimizing paths.

To summarize, we have

P(s) = /P s(Z) dIF, (3)
*(s) = /P _s(@)dl”” = min /P s(z)dl”. (4)

The traveltime functional 7*(8) is stationary with respect to small variations in the path
P*(s).

1.3 Snell’s Law

Snell’s law is a consequence of Fermat’s principle. This can be seen from a simple geometric
argument based on stationarity of the traveltime functional, illustrated in Figure 1.

We consider a medium with two regions of constant slowness s;,s2 separated by a
plane boundary, and the ray path connecting two points, A and B, located on either side
of the boundary. Referring to Figure 1, we let the solid lines denote the ray path having
stationary traveltime and let the dashed line be a perturbed ray path. Each path is assumed
to comprise straight lines bent at the boundary. We let 6; and #; denote the angles of the
stationary path from the normal to the boundary in the two regions, respectively. A simple
geometrical argument can be used to infer the difference in length between the two paths
to first order in h, the distance between the points where the paths intersect the boundary.
We find that the segment of the perturbed path in region 1 is hsin(fy + 66) units longer
than the stationary path, while in region 2 the perturbed path is hsin#; units shorter.
Therefore, the traveltime along the perturbed ray differs from that along the stationary ray
by At, given by

At = s1hsinfd; — sahsin by, (5)

neglecting the second order effects due to finite 66 and due to the slight differences in the
remainders of these two paths. Since the traveltime is stationary, we set At = 0 and find

?Fermat’s principle is actually the weaker condition that the traveltime integral is stationary with respect
to variations in the ray path, but for traveltime tomography using measured first arrivals it follows that the
traveltimes must be minima.

3The notation P € Paths means that P is a member of the set Paths.
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Figure 1: Snell’s law is a consequence of the stationarity of the traveltime functional.

that
s18inf; = szsinfy (Snell’s law). (6)

A thorough discussion of the physical significance of Fermat’s principle and its relation
to Snell’s law may be found in The Feynman Lectures [Feynman, Leighton, and Sands,
1963).

1.4 Seismic Inversion

Suppose we have a set of observed traveltimes, ¢y, ..., t,,, from m source-receiver pairs in
a slowness medium s(Z). Let P; be the Fermat ray path connecting the 1th source-receiver
pair. In the absence of observational errors, we can write

/.s(:i:')dlp":t.-, i=1,...,m. (7
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Figure 2: Schematic illustration of ray paths through a block velocity model.

Given a block model of slowness, let [;; be the length of the sth ray path through the

jth cell:
b= 8
7 Ipincell; (®)
Given a model with n cells, Eq. (7) can then be written
n
Zl{j.ﬁj———t,', 1=1,...,m. (9)
j=1

Note that for any given 1, the ray path lengths [;; are zero for most cells j, as a given ray
path will in general intersect only a few of the cells in the model. Figure 2 illustrates the

ray path intersections for a 2-D block model.
We can rewrite (9) in matrix notation by defining the column vectors s and t and the

matrix M as follows:
81 t ly hi - hn
wE Rl

8n tm lm1 lm2 -+ lnn

Ms =t. (11)



1.5 Linear vs Nonlinear Tomography

We now define three problems in the context of Eq. (11).

In the forward problem, we are given 8; the goal is to determine M and t. This entails
computing the ray path between each source and receiver (using a ray tracing algorithm)
and then computing the traveltime integral along each path.

In the linear tomography problem, we are given M and t; the objective is to determine
8. The assumption here is that the ray paths are known a priori, which is justified un-
der a linear approximation that ignores the dependence of the ray paths on the slowness
distribution. Typically, the ray paths are assumed to be straight lines connecting sources
and receivers, adding a second connotation to the term “linear.” Linear tomography is
commonly practiced in medical imaging and in many geophysical situations as well.

In nonlinear tomography, we are given only t (and, of course, the source and receiver
locations); the goal is to infer M and s. In this problem, the dependence of the ray paths on
the slowness distribution is acknowledged. Nonlinear tomography is necessary in problems
in which the slowness varies significantly across the medium of interest, which includes many
seismic tomography problems. The ray paths in such media will show significant curvature
(i.e., be nonlinear) in a way that cannot be known a priori.

The linear tomography problem can be solved with a variety of optimization techniques.
In the least-squares method, for example, the normal solution for 8 is expressed analytically
as

8 = MTM)MTy, (12)

assuming this inverse exists. If the inverse does not exist, then (12) must be “regularized.”
Typically, regularization is accomplished by adding a positive matrix to M7 M and replacing
the singular inverse in (12) by the inverse of the modified matrix.

In nonlinear tomography, an iterative algorithm is generally needed to find an approxi-
mate solution 8. The basic structure of such an algorithm is as follows:

1. Set 8 to a given initial model (a constant or the previously best-known geological
model).

2. Compute the ray path matrix M and traveltimes t for § and set At =t — .
3. If At is sufficiently small, stop.

4. Find a model correction As as the solution to the linear tomography problem: MAs =
At.

5. Update 8 to the new model obtained by adding the model correction As to the previous
model 8.

6. Go to Step 2.

This algorithm looks very reasonable and in fact it actually works in some cases! But not
always. For models with low slowness contrasts, the algorithm will converge to a sensible
result. When the method fails, the failure mode is usually a divergence to a highly oscillatory



model. Ad hoc procedures to reduce the possible range of slowness values and to guarantee
a high degree of smoothness have commonly been introduced to deal with this instability.
But a really satisfactory method of stabilizing the iteration scheme has been lacking.

Analyzing the algorithm, we see that there are really only two significant calculations
contained in it. Step 2 is just the solution of the forward problem for 8. This step should
not introduce any instability, since it can be performed essentially as accurately as we like,
and are willing to pay for. Step 4, on the other hand, is a linear tomography step imbedded
in a nonlinear algorithm. We should be skeptical of this step. Linear inversion implicitly
assumes that the updated model (after adding the model correction) is not so different
from the previous model that the ray path matrix M should change significantly from one
iteration to the next. If this implicit assumption is violated, then this step is not justified,
and steps 4 and/or 5 in the algorithm must be modified.

In the remainder of these lectures, these problems will be analyzed in some detail, and
several methods of stabilizing the nonlinear inversion problem will be developed.

1.6 Diffraction Tomography

Geophysical diffraction tomography [Devaney, 1983; Wu and Toksoz, 1987; Lo, Duckworth,
and Toksdz, 1990] consists of a collection of methods including Porn and Rytov inversion
that make use of full waveform information in seismic data. Successful inversion of real
data has also been performed using both microwave and ultrasonic diffraction tomography
[Tabbara, Duchéne, Pichot, Lesslier, Chommeloux, and Joachimowicz, 1988]. Instead of
using only the first arrival traveltimes as the data in the inversion, wave amplitude and
phase in the waveform following the first arrival are used. It is necessary to use full waveform
information whenever the wavelengths of the probing waves are comparable in size to the
anomalies present in the region to be imaged. The ray approximation is strictly valid only
for very high frequencies or equivalently for wavelengths “small” compared with the size of
the anomalies (there will be a discussion of the eikonal equation in a later lecture). The
term “small” is subject to interpretation, but extensive experience with the asymptotic
analysis of wave propagation problems has shown that if the largest wavelength found in
bandlimited data i8 Apax, then the ray approximation is valid when the anomalies are of
size = 3Amax or larger. If this relationship is violated by the tomographic experiment, then
diffraction tomography should play an important role in the reconstruction.

Diffraction tomography is both more and less ambitious than traveltime tomography. As
it exists today, diffraction tomography is a strictly linear tomography method. A startin_
model is required. The usual starting model is a constant, because this method requires
a comparison between predicted wave fields (planewaves for a constant background) anc
the measured wave fields. If a nonconstant starting model is used, then “distorted wave”
diffraction tomography may be applied to the differences between the computed complex
wave field and the measured wave field. In either case, it is possible to prove convergenc
of diffraction tomography to a solution of the inversion problem if the comparison wav
field differs by a small enough amount from the measured wave field. Thus, diffractior
tomography is another version of linear tomography — although in this case the “rays” ma
not be straight, it is still linear in the mathematical sense that the perturbations from th
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Figure 3: Example of real data for crosshole seismic tomography showing the result of a
single fan beam with a source at 700 feet in one borehole and receivers spaced 10 feet apart
in the other hole. (Courtesy of CONOCO Inc.)
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starting model are very small. So diffraction tomography is less ambitious than traveltime
tomography in the sense that it is inherently limited to be linear tomography.4

On the other hand, diffraction tomography is more ambitious than traveltime tomogra-
phy, because it tries to make use of more of the information contained in the measured seis-
mic waveforms. There are serious problems involved with this process, because amplitude
information can be ambiguous. It is well known that wave attenuation, three-dimensional
geometrical spreading, scattering, and reflection/transmission effects can all mimic each
other — producing similar effects in the waveform. Thus, to be successful, diffraction to-
mography must meet the ambitious goal of solving all of these problems simultaneously
for real data. To date, most of the work in diffraction tomography has been limited to
two-dimensional inversions and the most successful applications have used ultrasound for
medical imaging or microwaves for imaging metallic reinforcements in concrete.

I view diffraction tomography as an interesting long-term goal. The results obtained
from traveltime tomography may be used as the required starting model for “distorted
wave” diffraction tomography.

2 Feasibility Analysis for Tomography

The idea of using feasibility constraints in nonlinear programming problems is well es-
tablished [Fiacco and McCormick, 1990]. However, it has only recently been realized that
physical principles such as Fermat’s principle actually lead to rigorous feasibility constraints
for nonlinear inversion problems [Berryman, 1991]. The main practical difference between
the standard analysis in nonlinear programming and the new analysis in nonlinear inver-
sion is that, whereas the functions involved in nonlinear programming are often continuous,
differentiable, and relatively easy to compute, the functionals in nonlinear inversion (e.g.,
the traveltime functional) need not be continuous or differentiable and furthermore are very
often comparatively difficult to compute.

We present the rigorous analysis here in a general setting, because it is actually quite
easy to follow once we have understood the concepts of convex function and convex set.
This analysis is important because it will help us to characterize the solution set for the
inversion problem, and it will help to clarify the questions about local and global minima

of the inverson problem.

2.1 Feasibility Constraints

Equation (7) assumed that P; is a Fermat (least-time) path. Now let us suppose that P; is
a trial ray path which may or may not be the least-time path. Fermat’s principle allows us
to write

/ s(2)dIF > t;. (13)

When we discretize (13) for block models, it becomes
Ms > t. (14)

4An iterative method for diffraction tomography has been proposed recently by Ladaa and Devaney
[1991]. Such methods are “nonlinear” in the sense used here.




Equations (13) and (14) can be interpreted as a set of inequality constraints on the
slowness model 8. When 8 obeys these m constraints, we say that 8 is feastble. When any
of the constraints is violated, we say s is infeastble. The set of inequalities collectively will
be called the feasibility constraints.

2.2 Review of Convexity

Here we define some mathematical concepts [Hardy, Littlewood, and Pélya, 1934] which will
facilitate the discussion and analysis of feasible models. In the following, we let § denote a

linear vector space.

Definition 2.1 (convex set) A set A C § is convez if, for every 81,8, € A and every
number A € [0,1], we have A8y + (1 — A)sp € 4.5

Examples of convex sets are
1. R (the real numbers).
2. R, (the positive real numbers).

3. The positive n-tant R%; i.e., the set of n-dimensional vectors whose components are
all positive.

4. C.(R®) (the set of positive, continuous functions, s(Z) > 0, where € R3).
5. A closed interval [a,}] in R.®

6. A hyperplane in R"; i.e., vectors 8 obeying c¢Ts = 4 where c is a vector and v is a
scalar.”

7. The interior of a circular disk in 2-space; t.e., points (z,y) obeying
(z-a) +(y-b)° <<
for real a, b and c.

We note that R (example 3) defines the set of n-dimensional block slowness models such
that the slowness of each cell is a positive number. C;(R?) (example 4) is the space of
positive, continuous 3-D slowness distributions.

Lemma 2.1 If A; and A3 are convez setls, then A1 N A2 13 a convez set.8

Proof. If A; N Az is empty, it is convex by default (one cannot find 8;, 8; and A which
disobey the definition).

Assume the intersection is not empty and let 8 = As; + (1 — A)s2 for some 0 < A <1
and 81,82 € A; N A2. Since A; and A, are each convex, we must have 8 € 4; and 8 € A;.
Consequently, 8 € 4; N A2. 1

54 C § should be read here as: A, which is a subset of §.

6[a.,b] means the set of numbers z such that a < z <.

7T used in a superscript means to take the transpose of a vector or a matrix.

84, N A2 denotes the tntersection of sets A, and A (i.e., the set of elements common to both sets).

9



Definition 2.2 (cone) A set A C § 1s a cone if, for everys € A and every number v > 0,
we have y8 € 4.

Examples 1-4 of convex sets given above are also examples of cones. We infer that the
set of positive slowness models (block or continuous) is convex and conical (a convez cone).

Definition 2.3 (linear functional) The functional f: $ — R is linear if, for alls;,8, € §
and real numbers Ay, Az, we have®

f(A181 + A282) = Ap f(81) + A2 f(s2). (15)

Note that a linear functional vanishes at the origin. We will also need to consider the
broader class of functionals that are linear except for a shift at the origin.

Definition 2.4 (shifted linear functional) The functional f: S — R 1s shifted linear if
the functional

g(8) = f(s) — £(0) (16)
18 linear.

Definition 2.5 (convex functional) Let A be a convez set in S. A functional f:A - R
18 convez if, for every 81,83 € A and number A € [0,1], we have

f(As1+ (1 - A)s2) < Af(s1) + (1 — A)f(s2). (17)
Definition 2.6 (concave functional) A functional f is concave if (—f) is convez.

Definition 2.7 (homogeneous functional) Let 4 be a conein S. A functional f: 4 — R
18 homogeneous if, for everys € A and 4 > 0, we have

f(vs) = f(s). (18)
It should be clear that every linear functional is also convex, concave and homogeneous.
2.3 Properties of Traveltime Functionals
Lemma 2.2 7P 15 a linear functional.

The proof of this stems from the fact that integration is a linear functional of the
integrand.
Since it is linear, it follows that 7% is also convex, concave, and homogeneous.

Lemma 2.3 7* ts ¢ homogeneous functional.

°f:§ — R means: the function f which maps each element of the set § to an element of the set R.

10



Proof. Given 4 > 0 we have
¥ (48) = mPin F (y8). (19)

Using the linearity of 7P,
r*(y8) = min 7" (8) = ymin7"(s) = 77°(s). W (20)

Lemma 2.4 7* is a concave functional.

Proof. Given slowness models 8; and sz and A € [0,1], let 8 = As; + (1 — A)83. Letting
P*(8) be the Fermat ray path for s, we have

r*(8) = 7 ®)(s). (21)
The linearity of 7F then implies
7*(8) = ArP () (8y) + (1 — A)rP ) (sy). (22)

Since 7* minimizes 7P for any fixed model, it must be the case that r”"(8)(s;) > 7*(s;) and
similarly for s;. Further, A and (1 — A) are non-negative. Therefore, (22) implies

7*(8) > Ar*(81) + (1 — A)r"(s2). O (23)

2.4 Feasibility Sets

Given the set of observed traveltimes, t; for t = 1, ..., m, we define two sets of models.

Definition 2.8 (local feasibility set) The local feasibility set with respect to a set of trial
ray paths P = {Py,...,Pn} and observed traveltimes ty, ..., tm 18

FP={a|7F(8) > t;, forall i=1,...,m}. (24)

Definition 2.9 (global feasibility set) The global feasibility set with respect to the ob-
served traveltimes iy, ..., ty, 18

Fr={s|r'(8)>t;, forall i=1,...,m}. (25)
Now we show that the concavity of 7¥ and 7 implies the convexity of 7 P and 7*.
Theorem 2.1 77 is a conver set.

Proof. Suppose 81,82 € 7P and let 8 = As; + (1 — A)sz where 0 < A < 1. Since, for each
i, 77 is a concave (actually linear) functional, we have

7 (8) 2 Arf (81) + (1 )7 (82). (26)

(Although equality applies in the present case, the “greater than or equal to” is important
in the next proof.) But 7F(s;),7¥ (s2) > t; and A and (1 — )) are non-negative. Therefore,

i (8) 2 M+ (1 - At =t (27)

Thus,s € 77. 1
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Theorem 2.2 7* 13 a convez set.

The proof proceeds in analogy with the previous proof, with 7} replacing 77, but the
inequalities come into play this time.

Theorem 2.3 Given any model s, there exists v > 0 such that ys € 7*.

Proof. Let
12"
= } 28
7 ke?ll,?fm} 7. (8) (28)
For any 1, 7} is homogeneous, implying
(8) = 77 (8) = 7 (8) max =i > 1 (8) s = ¢ (29)
h = T, =T; > —_ =t
i \7 RLL s mk 1',':(8) N ) T:(S) t

We see that s satisfies all the feasibility constraints, so it is in 7*.

We can decompose 7* into two parts: its boundary and its interior. The boundary of
7*, denoted Bdy 7*, comprises feasible models 8 which satisfy some feasibility constraint
with equality, 7.e.,

Bdy 7* = {s e 7* | r(s) = ¢;, for some i}. (30)
Models in the interior of 7*, denoted Int 7*, satisfy all constraints with inequality:

Int7* = {s € 7* | 1 (8) > ¢;, for all ¢}. (31)

2.5 Convex Programming for Inversion

We will first define convex programming for first arrival traveltime inversion. Then we
present some basic theorems about convex programming in this context.

Definition 2.10 Let ¢(8) be any convez function of 8. Then the convez nonlinear pro-
gramming problem associated with ¢ is to minimize ¢(8) subject to the global feasibility
constraints 77 (8) > t;, fori=1,...,m.

Definition 2.11 Let ¥”(8) = 7, w;[rF(s) — t;]* for some positive weights w; and some
set of ray paths P = {Py,...,Pp,}. Then, the convez linear programming problem associated
with U2 is to minimize W’ (8) subject to the local feasibility constraints F(s) > t; for
i=1,...,m.

Theorem 2.4 Every local minimum 8* of the conver nonlinear programming problem as-
soctated with ¢(s) 18 a global minimum.

Theorem 2.5 FEvery local minimum 8* of the convez linear programming problem associated
with ©” (8) is a global minimum.

12



Ms >t
and
(Ms)j=t
for some i
onh boundary

(Ms); < t;for some |

Figure 4: The defining conditions for the feasible and infeasible parts of the model space
and the boundary separating them.

Proof. This proof follows one given in Fiacco and McCormick [1990]. Let 8* be a local
minimum. Then, by definition, there is a compact set C such that 8* is in the interior of
CN#* and

¢(s”) = min ¢(s). (32)

If s is any point in the feasible set 7* and 0 < A < 1 such that 8] = As* + (1 — A\)s is in
CNn7*, then

¢(s) >

$ei) 26, 2N M) _ ) (33)

- 1-2A
The first step of (33) follows from the convexity of ¢ and the second from the fact that s*

is a minimum in C N 7*. Convexity of 7* guarantees that the convex combination 8} lies
in the feasible set. This completes the proof of the first theorem.

13



The proof of the second theorem follows that of the first once we have shown that the
function ¥” is convex. Consider a term of ¥”

[rF (As1 + (1~ A)sz) — ;] = [Mf (81) + (1 = N)F (82) — 1]

= A7 (81) — t? + (1 - N[ (s2) — ti]?
=1 = N[ (81) - 77 (s2)]?
/\[-r,-P(sl) - t.-]2 +(1- /\)[Tl-P(Bz) - t;)2.

IA

Then, if 8y = A8; + (1 — A)sg,
U7 (8)) < AP (81) 4+ (1 — A)¥7 (s,), (34)

so ¥” is a convex function. 1§

3 Least-Squares Methods

We will consider solutions to the tomography problem for the case of block models. Given
a set of weights w; > 0,1 =1, ..., m, we define the functional ¥: § — R by

W)= 3 wilri (s) - ]2 (35)

=1

W¥(s) measures the degree of “misfit” between the observed data and traveltimes predicted
by the model s.

3.1 Scaled Least-Squares Model

Definition 3.1 (scaled least-squares model) The scaled least-squares model with re-
spect to a given model 8o, and set of weights w;, i the model 8y g5, minimizing ¥ subject
to the constraint that 8 = vy8qg for v > 0. Thus

@ (B15jao) = min ¥(750). (36)

The scaled least-squares model associated with 8p 18 unique.
To solve for the scaled least-squares model, we expand ¥(vs¢) as

¥(y80) = ) wilr (180) — t:]? (37)
i
= Z w;r; (y80)% ~ 2 E witi7; (y80) + Z w;t?. (38)
i i i
Using the homogeneity of 7, we can write

¥(y80) = 4* Z w;r; (30)% — 2v E wit;7] (80) + Z w;t}. (39)

14



This is simply a second-order polynomial in v and achieves its minimum at v = 7Ls[g,],
where

s witi7]
Thus
BLs[so] = So——§: l;):i‘ifis(:;)z)- (41)

Theorem 3.1 For any 8o, 8Lsjs,) ¢ Int 7.

Proof. We have from (40)

YLS[80] i wyT) (50)2 = f: witi7; (80), (42)

=1 i=1
or, given the homogeneity of 77,
m
D> wir} (80)[r/ (Brs(s,)) — ti] =0. (43)
1=1

Since the w; and values of 7’ are positive, this can only be true if either 7;(8Ls[s,]) = &
for all i (i.e., 8ygs,) € Bdy 7" and is an exact solution to the inversion problem) or if
7 (BLs[so)) < ti for at least one 1 (i.c., Brgjs,) & 7 *). Thus, the scaled least-squares model
cannot be in Int 7*. 1

We can write the scaled least-squares model in matrix notation as follows. Let W be
the diagonal matrix formed from the positive weights w;:

wy
w2
W= ) . (44)

W

Further, let Mg be the ray-path matrix computed from sg. Thus, r*(80) = [Mo8ol;. In
matrix notation, (40) becomes

_ st MI Wt (45)
TLS[80] = Sg‘MgWMoso,
implying
IMITWt
89 0 (46)

BLsioo] = 0 T\MTWose”

15



3.2 Least-Squares Models

Definition 3.2 (least-squares model) A least-squares model, with respect to weights w;,
13 a vector 81,3 which minimizes ¥, i.e.,

U(8Ls) = min U(s). (47)

The least-squares model may be nonunique. Nonuniqueness is expected when m < n, 1.e,
there are fewer traveltime data than model cells, or when m > n and the ray-path matrix
has a right null space containing ghosts g. The most common method of picking the “best”
least-squares solution [Penrose, 1955b] is to choose the one of minimum' Euclidean norm.
This “best” solution has some nice properties as we shall see when we discuss ghosts in
tomography, but it may not represent the “best” solution to the inversion problem.

Corollary 3.1 s ¢ Int 7*.

Proof. This corollary follows from the fact that 8y s = 8pgg, ), ¢-€., a least-squares model
is the scaled least-squares model with respect to itself (or otherwise there would be a model
yielding smaller ¥). §

The preceding proof is entirely adequate to establish the infeasibility of the least-squares
point. However, it may be enlightening to present a second proof based on stationarity of
the ray paths.

Consider the deviation of the least-squares functional induced by a small change in the
model:

60 = U(s+ 6s) ~¥(s) = Z:w.-[r.-*(s +68) — t5)% — Zw,-[ri*(s) ~t)2. (48)

This equation may be rearranged without approximation into the form

5% =2 Z:w,-[r,-*(s + 838) — 17 (8)]{(7 (s + 68) + 7' (8))/2 — ti]. (49)

For small slowness perturbations 6s, the first bracket in the sum of (49) is clearly of
order s, while any contributions of order és in the second bracket are therefore of second
order and may be neglected. If di}(s] is the infinitesimal increment of the (or a) least-time
ray along path 1 for s, then

2 (s + 68) — *(s) = / (s + 68) dI?[s + b3] / sdl?[s]. (50)

Recall that stationarity of the ray paths near the one of least time implies that
/sdz,.*[s+5s] - /s{dz:[s]+ 481} = /sdl;‘[s], (51)
where dél; is the perturbation in the infinitesimal increment d!}[s| of the ray path induced

by the fact that di}{s+ §s] is the one for the perturbed model and therefore generally only
slightly different from that for s. (Note: There are pathological cases where a small change
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in the model s can induce a large change in the ray path, but we will ignore this possibility
for the present argument.)
Using (51) in (50), we find that

rt(s +6s) — 17(s) = / 53 dl}[s+ 6s] / 5s di;[s] (52)
to lowest order in §s. Thus, (49) becomes

69 =23 wi( / §sdI2 [s])[r (s) — ti]. (53)

Equation (53) is the expression needed to construct the functional (Frechét) derivative of
V. If s produces the minimum of ¥(s), then the functional derivative should vanish. We see
that the weights w; are positive, the coefficient of 8s is the integral of the increment of the
ray path itself in the regions of change which is strictly positive, and if the the traveltime
function 7*(s) — t; > O as is required for all ¢ in order for the model s to be feasible, then
the derivative cannot vanish and therefore s is not the minimum. This contradiction shows
again that either the minimum of the traveltime function must be infeasible, or it must
solve the inversion problem.

3.3 Damped Least-Squares Model

Let C be a diagonal (coverage) matrix formed from the positive weights c;:

C= . : (54)

The ¢;s may be treated here as arbitrary positive weights, but a definite choice of the ¢;s
will be found later.

Definition 3.3 (damped least-squares model) The damped least-squares model with
respect to a given model 8o, and set of weights w;,c;, 1s the model 8 5g, ) Mminimizing

¥(s) + (s — 80)TC(s — 8p). (55)

Like the scaled least-squares model, the damped least-squares model is unique.

We can solve for the damped least-squares model based on a linear approximation to the
traveltime functionals. Given the model 8y, let P? denote the least-time ray paths through
80. Then, to first order in 8 — 8y we have

* Py
7 (8) ~ 7, * (8). (56)
This approximation yields

¥(s) = (t — Mos)T W (t — Mos), (57)
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where Mp is the ray-path matrix obtained from the ray paths P?.
Using the first-order approximation, the damped least-squares model becomes

BLS[s0.u] = 80 + (M3 WMo + pC) *MIW(t — Moso). (58)
This equation can be rearranged to show that
pC(8Ls(so,4] — 80) = M§ W (t — Modpsjs, u))- (59)

Then, we obtain the following two theorems: ,

Theorem 3.2 Ifso ¢ 77, then 8Ls[so,u] d0€8 not solve the inversion problem for any u > 0.
Theorem 3.3 Ifso & 7%, then 8LS[80.u] & 7o,

Proof. The proofs are by contradiction.

First, suppose that §pgjg, ] solves the inversion problem so Mo8Ls(s,,,) = t- Then, (59)
shows that 8gjg,,, = 80 (if # > 0) so Mosp = t. But this result contradicts the assumption
that 8o ¢ 7% so 8Ls(so,u] does not solve the inversion problem if 8o is infeasible.

Second, suppose that 8pg(s, ) is feasible (z.e., MoBLs[s,,s] = t and, making use of the
previous theorem, we may exclude the possibility that it solves the inversion problem), then
it follows from the positivity of all the matrix elements in (59) that 8LS[so,4) < 80. But, if
8¢ is infeasible so (Mpsg); < t; for some ¢, then it also follows that (MoéLs[so.u])-' < t; for
the same 1 so 85[g,,,) is infeasible, which contradicts the original feasibility supposition on
8LS[so,u)- B

These results are strong because the infeasibility of 8pg[g, . holds for any value of the
damping parameter u > 0.

3.4 Physical Basis for Weighted Least-Squares

So far we have treated the weights w; as if they are arbitrary positive constants. But are
they arbitrary? If they are not arbitrary, then what physical or mathematical feature of
the inversion problem determines the weights?

Our goal in these lectures is ultimately to solve (if possible) the nonlinear inversion
problem. So we must keep in mind that the arguments often given for determining the
weights in weighted least-squares schemes in other contexts may not be relevant to our
problem. In particular, these weights are very often chosen on the basis of statistical
(uncorrelated) errors in the data. The assumption behind these choices may be very good
indeed in some cases, but generally not in the nonlinear inversion problem. Our working
hypothesis for this analysis is that the major source of error in nonlinear inversion is not
the measurement error, but the error due to the erroneous choices of ray paths currently in
use in the algorithm. The statistical errors in the data become a significant issue only after
we have constructed a reliable set of ray paths so that the errors due to wrong ray paths are
smaller than the errors in the traveltime data. In fact, for high contrast reconstructions,
it may be the case that the errors in the traveltime data are only a small fraction of one
percent while the errors introduced by erronecus choices of ray paths are on the order of
several percent, or even more in pathological cases.
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We envision a two step process. First, we solve the inversion problem iteratively to find
a good set of ray paths. This step requires the weighting scheme described here. Second,
once we have a reliable set of paths, the weighting scheme can be changed to take proper
account of the statistical errors in the data.

Now we will try to use physical arguments to help us construct a proper set of weights.
Suppose that the traveltime data in our reconstruction actually come from a model that
is homogeneous, i.e., with constant slowness 0. What will be the characteristics of such
data? Clearly, the rays will in fact be straight and the average wave slowness along each
ray will be the same constant

t1 to tm
=T T I, L.’ (60)

where

L = z": Lij. (61)
i=1

Furthermore, it follows that the constant value of slowness is also given by the formula

= ——g,%ll;: (62)

This problem is an ideal use for the scaled least-squares approach presented earlier. We
know the ray paths are straight, so we know the ray-path matrix M. We know that the

g0

slowness has the form s = v, where v7' = (1,...,1) is an n-vector of ones. We want to
minimize the least-squares error
¥(yv) = (t - Myv)"W(t — Myv) (63)

with respect to the coefficient 4. The minimum of (63) occurs for
vIMTW(t - Myv) = 0. (64)

Solving for v gives

vIMTWt

%0 = 7= TNMTWMY (65)

To make it easier to compare (65) and (62), we will now introduce some more notation.

Define the m-vector of ones u” = (1,...,1). Then,
Mv =Lu (66)
and
MTu = Cv, (67)
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where L is a diagonal m X m matrix whose diagonal elements are the row sums of M given
by (61) and C is a diagonal n X n matrix whose diagonal elements are the column sums of
M given by

Cj; = 3_lij- (68)

m
1=1

In our later analysis, we will see that the matrix C (which we will call the coverage matrix)
is a good choice for the second weight matrix in damped least-squares (54).
Now we see that (65) can be rewritten in this notation as

uTLWt

°= WTIWLu’ =)

(o4

while (62) becomes
_ ult
" ulTLu’

Comparing (69) to (70), we see that these two equations would be identical if

oo (70)

WLu = u. (71)

Equation (71) states that u is an eigenvector of the matrix WL with eigenvalue unity. Two
choices for the product WL are

WL =1, (72)
where I is the identity matrix and
WL =L 'MC™'M7%. (73)

The choice (73) is undesirable because it leads to a weight matrix that is not positive
definite. The choice (72) leads to

W =L (74)

which is both positive definite and diagonal.

The true significance of this result becomes more apparent when we consider that the
traveltime data t = t + At will generally include some experimental error At. If we assume
the data are unbiased and the number of source/receiver pairs is sufficiently large, then to
a good approximation we should have uT At = 0. The result (69) can be rewritten as

_a’L™t

v= , (75)

aTu
where a = LWLu may be treated for these purposes as an arbitrary weighting vector. For
~ to be unbiased, we must have

aTL 'At =uTAt =0. (76)
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Since the Ats are otherwise arbitrary, we must have
u=L"'!a=WLuy, (77

which is the same condition as that found in (71). Thus, the choice (74) produces the
simplest weight matrix giving a linear unbiased estimator of the scale factor for a constant
slowness model. In a later lecture, we derive weights producing unbiased estimates for
arbitrary slowness.

Weighting inversely with respect to the lengths of the ray paths can be justified on
physical grounds using several different arguments [Frank and Balanis, 1989]. Signal-to-
noise ratio is expected to be better on shorter paths than longer ones, since the overall
attenuation will typically be smaller and the likelihood of missing the true first arrival
therefore smaller. Shorter trial paths are more likely to correspond to real paths that
remain completely in the image plane for two-dimensional reconstruction problems.

A disadvantage of using this weighting scheme is that sometimes the ray path is long
because the source and receiver are far apart (e.g., from the top of one borehole to the
bottom of the other). Yet the information contained in the ray is important because such
diagonal rays may help to determine the horizontal extent of some feature of interest, espe-
cially when the experimental view angles are severely limited as in crosshole tomography.
Weighting inversely with respect to the ray-path length tends to reduce the possibly signifi-
cant improvement in horizontal resolution that can come from inclusion of these rays. This
disadvantage can be circumvented to some extent by using more of these diagonal rays, i.e.,
using more closely spaced sources and receivers for the diagonal rays. Then, the weights of
the individual rays are smaller, but their overall influence on the reconstruction can still be
significant.

In a later lecture, we will show that mathematical arguments based on stability lead to
the same choice of weight matrices.

4 Algorithms for Linear Tomography

In the previous lecture, we spent a considerable amount of our time showing that least-
squares methods generally produce infeasible models in traveltime tomography. Having
thus ruined the reputation of least-squares methods, we will try to recover and arrive at a
new understanding of the true significance of least-squares methods in the present lecture.
We will find that there are two main points to be stressed: (1) The least-squares methods
and generalized inverses are intimately related and lead to the same results. (2) Iterative
methods based on least-squares criteria fall into the class of “exterior” methods for tomog-
raphy, i.e., at each step of the iteration sequence the “best estimate” of the solution is
infeasible so we are trying to approach the solution from outside the set of feasible models.

In linear tomography with block models, we must solve the linear system of equations
given by

Ms =t, (78)

where we recall that M is an m x n matrix, 8 is an n-vector and t is an m-vector. There
are a number of numerical algorithms for solving this system. These include
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1. Tomographic reconstruction methods (e.g., ART and SIRT).

2. Iterative matrix methods (e.g., Gauss-Seidel and Jacobi’s method).
3. Simple iteration.

4. Conjugate direction/gradient methods.

5. “Neural network” method.

Two difficulties arise in solving (78):

1. M is not a square matrix.

2. M is rank deficient.

The rank of a matrix is the dimension of the subspace spanned by its columns (or rows)
and cannot exceed the smaller of the two dimensions of the matrix. Letting r be the rank
of our m by n matrix M, if r = min(m,n) we say M has full rank. If r < m,n then M is
rank deficient.

Because of these two difficulties, we cannot simply solve (78) in terms of an inverse
matrix of M, because such an inverse does not exist.

Two techniques for handling the first difficulty (M is not square) are completing the
square and Moore-Penrose pseudoinverses. Two techniques for handling the second dif-
ficulty (rank deficiency) are regularization and pseudoinverses. Thus, the Moore-Penrose
pseudoinverse is a common solution to both.

4.1 Moore-Penrose Pseudoinverse and SVD

Any nonsymmetric (and/or nonsquare) matrix M of real numbers can be decomposed in
terms of a set of positive eigenvalues and two sets of orthonormal eigenvectors. Let r be
the rank of M. There exist r solutions to the eigenvalue problem

Mv = Au, (79)
MTu = av, (80)
such that A > 0 and u”u = vTv = 1. Letting A\;, u;, vi,i =1, ..., r, denote the solutions,

then
uMMTu,; = (A ul)u; = ul (\u;), (81)

and
viIMTMv; = A\, = vi (\T'v;), (82)

so that

(3 - MJuTu; = 0= (32~ AT, )
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Then, after normalizing the eigenvectors, it follows from (83) that
u?u,- = V:-rVJ' = 5.'_1'. (84)

The vectors u; and v;, respectively, are left- and right-hand eigenvectors of M corresponding
to the eigenvalue A;. Multiple eigenvectors associated with the same eigenvalue are not
necessarily orthogonal to each other, but they do form a subspace that is orthogonal to all
other eigenvectors with different eigenvalues.

4.1.1 Completing the square

These results are most easily derived and understood by using a technique of Lanczos [1961]
for completing the square. We define a real symmetric square (m + n) x (m + n) matrix

0 M
H-= (MT . ) . (85)
Then, (79)-(80) becomes
o) _, [
a(2) - (3)
Clearly, for each positive eigenvalue A; with eigenvector (u.T ,V‘T T, there is a corre-

sponding negative eigenvalue —\; with eigenvector (uf, —V'T)T.

4.1.2 Generalized inverse

The singular value decomposition (SVD) of M is given by

,
M= Z A.‘U,‘V,-T. (87)
=1
The Moore-Penrose pseudoinverse of M can be expressed as
r
M = Z A vl (88)
=1

Completing the square also permits us to find a simple derivation of the uniqueness
conditions required for a meaningful generalized inverse that gives rise to the formula (88).
Let A = MTM so that

A=) AT, (89)

=1

Then, A is real symmetric and therefore has real eigenvalues. A generalized inverse for A
can be written in the form

r
J&t = Z a,-_,-v.-v?, (90)
3]
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and must satisfy the consistency conditions

r
AAT=ATA =1, =5 vl (91)
i=1
The final expression in (91) is just the completeness relation within the subspace orthogonal
to the null space. Equaation (91) implies that A' is the unique matrix that satisfies the
conditions

AA'A = A, (92)
ATAAT = Al (93)
It follows easily from (91) that
a;j = 5.-,-//\?. (94)
Thus, the generalized inverse of this symmetric square matrix is just
Al = iv,—v?/)?. (95)
i=1

To find the needed relation for the nonsymmetric/nonsquare matrix M, again consider
the square matrix H. We find easily that

MMT o0
2 _
H _( ) MTM)' (%6)
Then, to be consistent we must have
H' = H(HY)! = (H)'H, (or,
from which it follows that
H - ( 0 M(MTM)f> B ( 0 (MJVIT)TM) (98
— \MT (MMt 0 A\ (MTM)tMT 0 ' -
Equation (98) implies that
Mt = MT(MMT)t = (MTM)'MT. (99

Using (95) in (99) then finally yields (88).
A more direct derivation comes from (95) by writing down the equivalent expansion fo
H!. First, expand H in terms of the eigenvectors as

H:%Z;»\.-[(:::)(u? v?)—(_“‘:i)(u? —v'.T)] (100
:Z;A‘ [(‘(/)-)(U'T 0)+(l(1;)(0 "'.T)]- (101

The factor of one-half in (100) arises from the fact that the norm of the eigenvectors of F
(as defined here) is 2. Then, from (100) and (95), we obtain

H' = lz;:l,\;‘ [(3) (uf 0)+ (‘6") (0 v.-T)] = (1&1 (M(:,T)T), (102
and (88) again follows.
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4.1.3 Relation to least-squares

Now we can solve the least-squares problem using the SVD of M. To see this, we will let
w; = 1 for simplicity. To begin, we recognize that we can expand 8 and t in terms of the
left- and right-eigenvectors:

,
t =) nu+to, (103)
1=1
r
8 =) oivi+so, (104)
=1
where
viso=ufto =0, (105)
and
% = ult, (106)
o; = vTs. (107)

In terms of the expansion coefficients and unit weights, we have

U(8) = (Ms - t)T(Ms - t) (108)
= tTto + Zr:(,\.-a.- - )2 (109)

For the nonzero eigenvalues, setting
/\,'0'.' =T (110)
minimizes ¥ by eliminating the sum in (109). Then,

6280+Z/\:1T§V5. (111)

The vector sg is an arbitrary vector from the right null space of M. We can minimize 87§

by setting 89 = 0. Thus, we obtain the minimum-norm least-squares model:
r
8Ls = Z/\;-_IT.'V,'. (112)
1=1
The reader can easily verify that
8Ls = Mft. (113)
It is a general result that the Moore-Penrose pseudoinverse solves the least-squares

problem. We will make use of this fact later when we attempt to construct methods of
solving the inversion problem that are both fast and easy to implement.
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We observe two special cases in which M is full rank. If r = n < m, then 8¢ is necessarily
zero. Further, we can write

M = (MTM)IMT. (114)
Second, if r = m < n, then t; = 0 and
Mt =MT(MMT) L, (115)
A subcase of both cases is r = m = n. M is then square and full rank, and we have
M =M1 (116)

4.2 Sequential and Iterative Methods
We will first consider the case where r = n. The least-squares solution is then given by
8Ls = (MTM)'MTt. (117)

We will begin by summarizing the main ideas behind two matrix inversion methods that
work if MTM is invertible. Then, we discuss other methods applicable to more realistic
problems.

4.2.1 Series expansion method
Again letting A = MTM, we observe that A is square and we suppose that it is of full
rank. In terms of the SVD of M,

A=) AT (118)
=1

Let p; = z\?. Then, since A satisfies its own characteristic polynomial, we have the
following matrix identity:

(A = p1I)(A — poI) ... (A — puI) = 0. (119)

The left-hand side of this equation is simply an nth order matrix polynomial in A, which
we can rewrite as

A" — (14t p)A" T+ (=1)*p1---paI = 0. (120)
Multiplying through by A1
A" = (py+ -+ pa)AV 44 (1)1 AT = 0, (121)
or
-1 (—l)nH n—1 -2
A :W(A —(p1t-+ o)A 4+ 1 ]). (122)

This gives a series expansion for A~! in powers of A itself. Based on this series we could
compute A~!MTt recursively if we knew the eigenvalues of A, or at least knew the sym-
metric functions of the eigenvalues that appear in the formulas.

This approach clearly fails if A is not of full rank, since the final division by the product
of the eigenvalues cannot be performed.
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£4.2.Z2 Conjugate directions

In conjugate directions [Hestenes and Stiefel, 1952], we expand A ™! differently. Let py, ..
Pr be a set of vectors such that

)

P! Ap; = 6,;p] Ap;. (123)

The vectors p; are not necessarily orthogonal with respect to the usual vector dot product,
but they are orthogonal relative to the matrix A. The vectors P; are then said to be
conjugate relative to A. Then suppose that

n T
Al=A=Y PP (124
; Py APp; )

It follows from (123) and (124) that

A'(Ap;) =D _pisij = p;, (125)
1=1
SO
A'A=1=AA (126)

if the p;s span the entire vector space, so the completeness relation in terms of the p;s is

" p;pJA

. (127)

I=

This approach therefore produces a valid and simple formula (124) for A~! when A is of
full rank, and furthermore it is guaranteed to converge in a finite number of steps. But,
when A is rank deficient, it must happen that pT Ap; = 0 for some p; and, therefore, this
method fails also in the cases of most interest to tomography.

Conjugate directions may still be of interest however if care is taken to choose only
p:s orthogonal to the null space of A. Then, this approach may be used to generate the
generalized inverse of A.

4.2.3 Simple iteration

In simple iteration, we start with an initial model 8(®) and iteratively generate a sequence
sk)) k=12, ... using

s(k+1) = (k) L MT (¢t — Ms(®). (128)
In terms of eigenvector expansion coefficients, the iteration sequence becomes

afkﬂ) = cr'-(k) + Xi(m — /\,-afk)). (129)
To solve this equation, we note that it can be rewritten as

ot = N+ (1= Ao = A+ (1= AB)[m + (1= AR D). (130)
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Rearranging the resulting series, we find
oD = 14 (1= A7)+ (1= 222+ 4+ (1= A2)KJNm + (1= A)1600 (131)

The series multiplying 7; can be summed exactly for any value of A; # 0 as

L4+ (L= A+ (1= AR 4.+ (1- M) = 2= (L ah (132)
' e L P )
from which it follows that
— — A)k+1
o™ = [1 - ] r+ (1= ), (133)

If \; = 0, (129) shows that ale) = a‘-(o). If we assume that the eigenvalues, );, are all
between —2 and 2, the iteration sequence converges. The condition —2 < A; < 2 thus
implies that a'(k) — 1;/Ai as k — oo. That is, the iteration converges to a least-squares
model.

We will see later that the stronger condition —1 < A; < 1 can be guaranteed with an
appropriate preconditioning (prescaling) of the matrix M.

Simple iteration is a good method for solving linear tomography problems, and is much
simpler to implement than other methods such as conjugate directions or conjugate gradi-
ents. This method has significant computational advantages when the dimensions of M are

large.

4.2.4 Neural network method

In this approach we consider a sequence of models as a function of a continuous index
variable, 8(n). The data misfit functional, ¥, applied to this sequence then is also a function
of n. We have

A dsT
Pl ZEI—V.T\II, (134)
where
Ver¥ = MT(Ms — t). (135)

We would like d¥ /dn < 0 so that 8(n) converges to a model that minimizes ¥ as n — oo.
It is easy to verify that we achieve a negative derivative by requiring, for some scalar v > 0,

— = —yMT(Ms - t). 36
= 7 (Ms — t) (136)
We thus have a first-order differential equation for 8(n). In terms of the expansion coeffi-

cients, oy, this becomes

dO‘l' _
d—f) = "/A,(T, - A,O‘,). (137)
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Using o; = 0 as an initial condition, the solution to (137) is given by
oi(n) = A7 [1 - e"’"-?”] . (138)

We see that 8(n) does indeed converge to 81g, with its exponential convergence rate con-
trolled by ~.

Further discussion of this approach together with comparisons to other methods may
found in Jeffrey and Rosner [1986a,b] and Lu and Berryman [1991].

4.3 Scaling Methods

Given M we define two diagonal matrices based on row and column sums of its elements,
l;;. Let L and C be diagonal matrices such that

Li =) lj, i=1,...m, (139)
=1

<
Il

l

o

CJ'J' i j= 1,...,ﬂ,. (140)

-
Il
—

L;; is the length of the ith ray path, obtained by summing the lengths of its intersection

with all cells. Cj;, on the other hand, is the total length of ray segments intersecting the

Jth cell. C;; is known variously as the illumination, hit parameter, or coverage of cell j.
Let 1, be the n-vector whose components are each 1:

L=|-1. (141)

Similarly, let 1, be the analogous m-vector. Then M1, is the m-vector containing the ray
lengths. We can also infer that L1,, is the same vector. Analogously, MZ1,, and C1,, are
both the n-vector containing the cell coverages. That is,

M1, = L1y, (142)
MT1,, = C1,. (143)

This implies that A =1, u = 1,,, v = 1, is a solution to the eigenvalue problem

Mv = ALu, (144)
MTu = ACv. (145)

This problem is a generalization of our earlier eigenvalue problem (79)-(80) in that it
incorporates positive definite weighting matrices L and C. In place of the orthonormality
conditions (84), we require the conjugacy conditions

ulLu; = v Cv, = §;. (146)
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With these conditions, the generalized eigenvalue problem can be converted to the standard
form of (79)—(80) using the transformations

M = L™Y*MC™/2, (147)
u' = LYy, (148)
v = CY2y. (149)

We see that, by construction, the eigenvalues of M and M’ are the same, but for different
eigenvalue problems: (144)-(145) and

M'v' = ad, (150)
M7Tu' = v, (151)

Theorem 4.1 The eigenvalues of M' lie in the interval [-1,1].

Proof. Recall that the eigenvalues come in pairs: if A, u',v' solves the eigenvalue problem,
then so does —A,u', —v'. Then, we may (without loss of generality) restrict the discussion
to eigenvalues satisfying A > 0.

Let A, u, v be any solution to (144)-(145) with A > 0. Then, in components,

Zlijvj = ALy, (152)
J

El,-,—u'- = AC’_.,-,-v,-. (153)
|

Let upmax be the largest absolute component of u, i.e., umax = max;|u;|. Similarly, let
Ymax = maXx; |vj|. Since l;; > 0, we can infer

Umax Z li;
J

Umax Z lt’j
'

Recalling the definitions of C;; and L,; given by (139) and (140), this implies

v

ALii|ug, (154)

v

ACjjlvjl- (155)

Ymax = A'“il; (156)

umax 2 Ay, (157)
which must hold for all 1 and j; thus

Ymax > AUmax, (158)

Umax > AUmax. (159)

Thus, we have vmax > Azumax, which implies A2 < 1 and therefore ~1 <A <1. 8
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4.4 Mathematical Basis for Weighted Least-Squares

In weighted least-squares, a good weighting matrix to use is L1, the inverse of the ray
length matrix. In other words, we should set w; = L'-—'-l. In an earlier lecture, we discussed
the physical arguments for using such a weight matrix. Here we will show that mathematical
arguments based on stability lead to the same choice of weight matrix.

There is an inherent arbitrariness to the choice of weight matrix in a least-squares
minimization. Let F and G be two positive, diagonal weight matrices, m x m and n x n
respectively. Then define the scaled inversion problem so that

M =F iMG™%, & =G1is, t =F it (160)

The (unweighted) damped least-squares minimization problem associated with (160) is to
minimize the functional

'(s") = (t' - M's")T(t' — M's') + p(s' - 8p)T(s' - 8}), (161)
with respect to 8'. The normal equations resulting from (161) are
(M'TM' + uI)(s' — 8h) = M'T(t' — M's}). (162)

The result for the untransformed s is exactly the same whether we use the functional (161)
or the weighted least-squares functional

W(s) = (t — Ms)TF!(t — Ms) + (8 — 80)TG(s — 80). (163)
In either case, the result is
s =80+ (MTF M + uG) 'MTF~1(t — Msy). (164)

In truth, every least-squares method is really a weighted least-squares method — some just
have unit weights everywhere.

The minimum of (163) is achieved by the slowness model given in (164) as long as
the matrix MTF M + uG is invertible. Thus, we may relax the conditions placed on the
weight matrix G somewhat if we so choose. One common choice is to make the regularization
term correspond to minimizing the gradient or curvature of the model. Then, the matrix
G = KTK, where Kas is either the gradient of the model or its Laplacian. Such a weight
matrix is neither diagonal nor positive. In fact, a constant model vector lies in the null
space of such a G. The combined matrix MTF~!M + uG may still be invertible however,
since the null spaces of the two terms are generally orthogonal.

There are physical reasons for choosing particular weighting schemes and some of these
reasons have been discussed in an earlier lecture. A sound mathematical reason for choosing
a particular scheme might be “regularization.” It may be difficult or impossible to compute
the result (164) unless appropriate weight matrices are used. We saw in our discussion
of simple iteration that this method will converge if the eigenvalues of the matrix M (or
equivalently M' here) lie in the range —2 < A; < 2. So how can we choose the weight
matrices to guarantee that the eigenvalues fall in the desired range?
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For the sake of argument, suppose that

Ms = AFr, (165)
MTr = AGs. (166)
Then, again in components, we have
Zl,'j.?j = AF,'.'T.', (167)
j
2 kit = AGjjs;. (168)

Letting smax be the magnitude of the largest component of 8 and rya the magnitude of
the largest component of r, we have

8maxLii 2 AFilril, (169)
rmaij' > '\ijlsjl' (170)
It follows that
>\t > A2 2y . 17
Smax 2 L Tmax 2 L.‘.'ij Smax ( 1)

So, in general, we can guarantee that the eigenvalues A will be bounded above by unity
by requiring that

Li:Ci:
1>—22  forall i,j. 172
o (72)

Many choices of F and G are permitted by (172), but perhaps the simplest choice is
F=L and G=C. (173)

Thus, although the choice (173) is certainly not unique, it is nevertheless a good choice for
the weight matrices in weighted least-squares, and guarantees that A? < 1 as desired.

In a later lecture, we will find that another choice of weight matrices has the same
constraining properties on the eigenvalues, yet has more useful properties in the nonlinear
tomography algorithms.

5 Ghosts in Tomography

A ghost in seismic tomography is a model perturbation that does not affect the agreement
between the predicted and measured first arrival traveltimes. For example, if

Ms=t, M(s+g)=t, (174)
then subtracting shows that

Mg =0, (175)
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so g lies in the null space of M, 1.e., in the null space of the traveltime functional. A careful
analysis of the ghosts shows that, while some are unavoidable due to the limited view angles
used when the data were collected, others are caused by unfortunate choices made when
discretizing the model. Thus, some of the ghosts may be eliminated by making unusual
choices for the model parametrization.

It is important to realize from the outset that it may not be possible to eliminate all
the ghosts. In fact, the normal solution to the least-squares problem cannot be found if
MTM is not invertible. Lack of invertibility is caused by the presence of a right null space
for M and the members of that null space we call ghosts. In some cases, simple tricks can
be developed to eliminate the ghosts, but not always.

5.1 Types of Ghosts

We will now carry out an in-depth analysis of a few common ghosts that can occur in seismic
tomography.

5.1.1 Single cell ghost

A single cell ghost occurs when no ray passes through a certain cell. That cell is uncovered,
not illuminated, not hit by any of the rays in the data set (at least for the current choice of
ray paths). Thus, the slowness of that cell is arbitrary, as it has no effect on determining

any of the traveltimes in the data set.
The proper way to deal with such a cell is to assign it some arbitrary value, like the
average slowness of all cells or the average of all contiguous cells.

5.1.2 Two cells with only one ray

When any two cells are covered by one and only one ray, a ghost arises because the increment
of traveltime 6t; through these cells is invariant to a perturbation of the form

gf =(0,...,0,li,0,...,0,-1;,0,...,0), (176)
since
6ty = I.'J'SJ' + Lk sk = 1,-_,-(5,- + al.‘k) + I;k(sk - al,-j), (177)

where a is an almost arbitrary scalar. The one constraint on a is that the perturbed
slowness vector

s =s+ag (178)

must be positive. Note that there is no ghost associated with a single cell having only one
covering ray.

The proper way to deal with such pairs of cells (especially if they are contiguous) is
to treat them as if they were combined into one larger cell, i.e., assign the same value
of slowness to both cells. This approach has the effect of eliminating the ghost while
simultaneously reducing the size of the model space by one dimension.
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If more than two cells are covered by one and only one ray, then there will be multiple
ghosts (for p cells there will be p — 1 ghosts). Again, one way to eliminate this problem is
to treat all such cells as a single cell. This approach may not be the best one if the cells are
not contiguous. Other approaches will be discussed in the section on eliminating ghosts.

5.1.3 Underdetermined cells in an overdetermined problem

The preceding discussion is a special case of a more general problem: underdetermined
cells imbedded in an overdetermined inversion problem. By underdetermined we mean that
we have fewer equations than unknowns. The example of two cells with only one ray is a
common example of this effect. Others would be three cells with two rays, 20 cells with 15
rays, etc. The existence of underdetermined cells may be the result of poor experimental
design, of physical limitations at the experimental site that reduce the possible range of
view angles significantly, or they may be caused by severe ray bending effects when high
contrasts in the slowness values are present. In the latter situation, we expect that rays will
tend to avoid very slow regions (Fermat’s principle says to take the fastest path, which may
mean to go around the slow region). Since experiments will normally be planned to achieve
the desired resolution assuming straight-ray coverage, the actual coverage in slow regions
is smaller than planned and may be reduced by these ray bending effects to the extent of
causing underdetermination.
This ghost problem can now be reduced to

M's' = 6t (179)

where M’ is an m' x n' matrix with m’' < n', 8’ is the subvector of the slowness model of
length n', and 6t’ is the subvector of the traveltime increment of length m'. A particular
solution of (179) is given by

s’ = MT(M'M'T) 15¢/, (180)

if the matrix M'M'T is invertible. But the general solution of (179) is any vector of the
form

g = MTM'MT)" 16t + g/, (181)

where g’ is any vector from the right null space of M'. This null space must have dimension
at least n' — m'.

The preferred solution to this problem is again to combine contiguous cells until the
number of equations is at least equal to the number of unknowns. Then n' — m' = 0, and
the null space is eliminated. Another method of dealing with the problem if the cells are not
contiguous is to fix the slowness value of n' — m' of those cells that have the least coverage,
thus removing them from the inversion problem.

5.1.4 Stripes

One of the most common types of ghosts in borehole-to-borehole tomography is the vertical
stripe. Stripes are ghosts caused by an unfortunate resonance of the model parametrization,
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Figure 5: Stripes are caused by straight rays used in crosshole tomography.

the limited set of view angles possible in the crosshole geometry, and the use of straight
rays in the reconstruction.

To see how the problem arises, consider the geometry of two vertical boreholes with
square cells of dimension h in the image plane. For purposes of illustration, suppose that
the borehole separation is just three cell widths and the borehole depth is two cell heights.
To get from one borehole to the other, the rays must cross the lines forming the vertical
boundaries between cells. Assuming straight rays, each ray is characterized by a total ray
path length L; = 3h/cosf;, where 0; is the angle the ray makes with the horizontal. So
the total path length in each vertical column is just h/cos®;. This part of the path length
is shared among the cells in a column differently for each ray path, but that is not so
important. What is important is that the sum is constant in each column for every ray.

The ray-path matrix takes the form

dyuh  dish ejah e1qh fish fleh

cosf; cos §1 cos 0, cos 01 cos 8, cosd)
ey T e A
M — coa' 2 cos. 2 COS. 2 COS' 2 cos. 2 cos. 2 , (182)

dph dpoh emah em4h [msh [meh
cos by, cos 8, cos coB b, cos b, cos by,

where the ds, es, and fs are nonnegative fractions satisfying

Zd.'j = ze.-_,,- = Zf.'j = 1, (183)

j=1 7=3 j=5
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for every ray path 1 < ¢ < m. The ds are associated with the cells in the first column; the
es with the second column; and the fs with the third column. Then it is clear that these
three vectors

1 0 1
1 0 1
-1 1 0
g=|_;| &=, &=, (184)
0 -1 -1
0 -1 -1
are ghosts for this problem, since in each case we find that
A _h
cosd; cos )
—h___h_
Mg — cos f2 cos 02 =0 (185)
A _h_
cos b, coB fpm

follows from (183).

These ghosts show up in the reconstructed slowness as vertical stripes — a constant
slowness perturbation is subtracted from one column and added to any other column.

To eliminate these ghosts, we need to break the unfortunate symmetry that has caused
this artifact to arise. These ghosts would not exist if the cells were not lined up perfectly
with both of the vertical boreholes. So one solution is to use cells that are not square or
rectangular, .e., odd shapes like hexagons, triangles, etc. Using a rectangular but staggered
grid would also remove the degeneracy. Or, combining a few of the poorly covered cells near
the top and bottom would also break the symmetry. A still simpler method of eliminating
the problem (at least conceptually) is to use bent rays, rather than the artificially straight
rays that are often incorrectly assumed to be adequate.

5.1.5 Linear dependence

Ghosts arise from the linear dependence of M or of submatrices such as M'. The example
of stripes arises from a gross linear dependence of all the rows of the full matrix M. The
examples of underdetermined group of cells arise because of poor coupling (or coverage)
between the rays and the cells. Other, more subtle and complex, linear dependencies may
also occur.

Indeed the defining equation for a ghost

Mg=0 (186)

is a statement of linear dependence of the rows of M. Equation (186) contains m equations
for the n unknown components of g, with m > n. Any n of these m equations are sufficient
to determine g and the remaining m—n equations can be determined from these n equations.
An exception to this statement occurs when the ghost is caused by complete decoupling as
in the case of the single cell ghost.
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5.2 Eliminating Ghosts (Ghostbusting)

Ghosts may be removed by using a variety of techniques, some of which have already
been described. Although ray bending can introduce ghosts in situations where very slow
regions are avoided by most rays, it can also provide a simple solution to some of the
problems created by the limited view angles available in crosshole measurements. Methods
of improving the coupling between rays and cells include implementations using fat rays
[Kak, 1984].

5.2.1 Fat rays

The fact that ray paths are stationary (:.e., that small variations in the ray path have no
effect on the traveltime to first order) means that each ray actually has a bundle of rays
associated with it, all with virtually the same traveltime. We can improve the coupling
between the rays and cells in the model by taking advantage of this fact. One possible
approach is to use more than one ray between each source and receiver pair: for example,
during the computation of the ray paths, we could save not only the ray we found with the
least traveltime, but also save several other trial rays that were close to the best one. Then,
in place of the single row of the ray-path matrix for the sth ray, we now insert multiple rows

lin liz - lin
Iy lgg -+ g

M= 2T ] (187)
la Lz o lun

where p is the multiplicity of the the sth ray path. This approach is relatively easy to
implement either for bending methods or for shooting methods of ray tracing, and has
the effect of multiplying the size of the data set by the number of rays (u) saved per
source/receiver pair. The disadvantage of using multiple ray paths per source/receiver pair
is that the data storage problem also gets multiplied by the number of rays saved per pair.

Fat rays are an alternative method using the same underlying physics without increasing
the size of our matrices. In this approach, we treat each ray as if it has a finite thickness.
Then, instead of measuring the linear increment of the ray that has passed through a cell,
in 2-D the ray now has an area associated with it and we measure the overlap of the ray
area with the cell area. In three dimensions, these areas all become volumes. If the ray
width in 2-D is Aw and the ray cross section in 3-D has area Aa, then the ray-path matrix
becomes

a;; a2 - Qin
1 az1 a2 - Qn
= A—' . . . . s (188)
w : : .. :
aml GGm2 °°° Qmn
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with the a;;s being overlap areas in two dimensions and

vir, V12 -+ Vin
1 V21 V22 - VU2p
= o I (189)
Aa : : .. :
Ymi Ym2 " VUmn

with the v;;s being overlap volumes in three dimensions. For traveltime tomography, it is
still important that the sums of the rows of M result in sensible ray path lengths, otherwise
the reconstructed slowness values will not be meaningful. The disadvantage of the method
just outlined is that the overlap areas and volumes are often tedious to compute.
Another method that has the advantages of both of the previous methods is first to
obtain the set of near-ray-path lengths shown in (187) and then average them according to
_ H
Lj==> luj. (190)

1
“ "'=1

With this approach, we end up with a single effective ray path and so do not increase the ray
storage problem, but we have the advantage that the individual contributions /;:; leading
to I;; through (190) are comparatively easy to compute. The resulting ray-path matrix is

l:ll 1:12 !__ln
l l |

M= | 2 T e (191)
l—ml l—m2 e Tm.n

It is clear that fat rays will accomplish the goal of improving the coupling between the
rays and cells. The matrices in (188) and (189) will certainly be significantly less sparse
than the the usual M based on skinny rays. Whether this change will be sufficient to make
a significant improvement in the reconstructions will, of course, depend on the particular
application. In general, fat rays should be used in addition to (not instead of) the other
methods of ghostbusting described in this section.

5.2.2 Summary

Methods of eliminating ghosts can be divided into two main categories: (i) experimental
design and (17) model design together with analytical tricks.

No amount of analysis can salvage a badly designed experiment. When designing a to-
mographic experiment, it is important to gather data from as many view angles as possible.
It is also important to gather enough data so that the cells we can resolve from our data
analysis are about the same size as the anomalies we want to detect. A rule of thumb is that
the number of source/receiver pairs should be about twice the number of cells we want to
resolve in our experiment. Another useful rule of thumb is to choose the average cell size to
be about 3Amax, Where Apmax = 1/ fimin8min 18 the maximum expected wavelength associated
with the minimum frequency fiin in the pulse propagation data and the minimum slowness
Smin eXpected in the region to be imaged. This rule arises from extensive experience with
the asymptotic analysis of wave propagation which we will not present here.
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The analyst must design the model to take optimum advantage of the data gathered,
while accounting for any prior knowledge of the medium to be imaged. The shapes and
sizes of the model cells are ours to choose, and should be used to advantage to solve any
problems that cannot be solved by good experimental design. We are always free to choose
cells larger than the expected resolution of the traveltime data. We may eliminate some
cells if they have poor ray coverage, or some contiguous cells with poor coverage may be
combined into a single cell for purposes of reconstruction. Cells can be of any shape we
choose; the choice of square or rectangular cells is often made for ease of display and for
ease of computation of ray paths, but other considerations may drive us to use odd shapes
for cells in some applications. Analytical tricks can be applied during the reconstruction
process once we have the data at home. Smoothing and clipping the slowness model values
can be done to force the reconstructed values to lie within reasonable limits. Fat rays are
a last resort if the other methods are not sufficient to eliminate the ghosts.

5.3 Significance of Ghosts

It is important to recognize that elimination of all ghosts may be neither possible nor
desirable. In our efforts to solve the inverse problem

Ms =t (192)

for the slowness model 8, we should keep in mind that there are really three stages in the
inversion process. The first stage is to find, if possible, a particular model s that satisfies
the data. The second stage is to analyze the null space of the operator M. We may use
standard numerical techniques at this point in the analysis to perform the singular value
decomposition of M and obtain a complete characterization of the null space. Having com-
pleted both of these steps, we can finally provide the complete solution to the inversion
problem. In fact, it may be that we need perturbations from the null space to satisfy var-
ious physical or geological boundary conditions present at the site where the tomographic
data were gathered. This process is completely analogous to the process of solving an ordi-
nary differential equation by finding a particular solution, computing a set of homogeneous
solutions, and finally producing a linear combination that satisfies the initial conditions.

6 Fast Ray Tracing Methods

The most expensive step in any traveltime inversion or tomography algorithm is the forward
modeling step associated with ray tracing through the current best estimate of the wave
speed model. It is therefore essential to make a good choice of ray tracing algorithm for
the particular application under consideration. Prior to choosing a ray tracing method, a
method of representing the model must be chosen. Three typical choices are: cells or blocks
of constant slowness, a rectangular grid with slowness values assigned to the grid points
and linearly interpolated values between grid points, or a sum over a set of basis functions
whose coefficients then determine the model. The ray tracing method should be designed
to produce optimum results for the particular model representation chosen.
We will consider three approaches to ray tracing:
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1. Shooting methods.
2. Bending methods.
3. Full wave equation methods.

These three methods are based respectively on Snell’s law, Fermat’s principle, and Huy-
gen’s principle. We will find that shooting methods and wave equation methods should
generally be used with smooth representations of the model such as linearly interpolated
grids or spline function approximations, while bending methods are preferred for constant
cell representations.

We will study each of these approaches in some detail in this lecture. But first we will
try to answer a question that is commonly asked about the necessity of using bent rays in
tomography.

6.1 Why Not Straight Rays?

Straight rays are used in x-ray tomography and the results obtained are very good, so
why not use straight rays in seismic tomography? For x-rays traveling through the body,
the index of refraction is essentially constant, so the ray paths are in fact nearly straight.
Furthermore, the reconstruction in x-ray tomography is performed on the attenuation co-
efficient, not the wave speed, so the situation is not really comparable to that of seismic
tomography. Reconstructions in seismic inversion and tomography are most often per-
formed on the wave speed or wave slowness. Since the earth is not homogeneous, the speed
of sound varies significantly and the effective index of refraction is far from being constant.
Thus, the rays of seismic tomography really do bend significantly and this fact should be
taken into account in the reconstruction.

Suppose that we use straight rays in our tomographic reconstruction when in truth
the rays whose traveltimes have been measured were actually bent according to Fermat’s
principle or Snell’s law. In a region where the wave speed is quite low, the true rays will tend
to go around the region, but the straight rays go through anyway. So the backprojection
along a straight ray will naturally focus the effects of a slow region into a smaller region
than it should. Similarly, in a region where the wave speed is quite high, the true rays will
tend to accumulate in the fast region, whereas the straight rays are completely resistant
to this focusing effect. Thus, the backprojection along a straight ray will tend to defocus
the effects of a fast region into a larger region than it should. If we could train our eyes
to look for these effects in straight ray reconstructions, then it might not be essential to
use bent rays. But until then, it is important to recognize that using straight rays has
important effects on the resolution of the reconstruction. Regions of high wave speed will
appear larger than true, so such regions are poorly resolved. Regions of low wave speed will
appear smaller than true, so such regions are poorly defined.

Having said all this, nevertheless there are circumstances where I would recommend
using straight rays in the reconstruction. First, if the region to be imaged contains very
high contrasts so that some of the assumptions normally made to speed up the ray tracing
codes are expected to be violated (e.g., rays double back on themselves), then stable re-
constructions with bent rays may be impossible while a straight ray reconstruction can still
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give some useful information. Second, if the desired result is just a low resolution image
showing whether or not an anomaly is present, then straight rays are entirely appropriate.
Third, if a reconstruction for anisotropic wave speed is being attempted, then straight rays
are recommended too, since the nonuniqueness expected in the reconstruction when bent
rays are coupled with anisotropy in the model is so overwhelming that I think little can be
done to overcome the problem at the present time.

Straight rays are always the fastest to compute since they depend only on the source
and receiver locations. So if resolution is not an issue but speed of computation is, then
of course straight rays can and probably should be used. However, using straight rays is
limiting the reconstruction to be merely linear tomography and since nonlinear tomography
is the subject of these lectures, we will not consider straight rays further.

6.2 The Ray Equations and Shooting Methods

Let the ray path P between two points A and B be represented by a trajectory Z(u), where
u is a scalar parameter that increases monotonically along the ray. We can then write the
traveltime along the path as

t = /P s(£(u)) di(u) (193)

u(B) .
= f(Z, %) du, (194)
u(A)
where 7 = dZ/du and
1@, = s(2)|31. (195)
Fermat’s principle implies that the stationary variation [Whitham, 1974]
u(B) A
6t=/ (Vef - 62+ Vf - 6] du = 0. (196)
u(A)
Integrating by parts
u(B) d
51‘.:/ [fo——V,—f] < 6Zdu = 0. (197)
u(A) du

Since this must be true for all §Z, we can infer

Vzf - diuvéf =0. (198)

Now we observe that
Vif = |Z|Vs, (199)
V.S = o(2)= (200)

&1
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Further, we have that dil = |:§:’|du, so stationarity of ¢t implies

d( d_
Vs = 37 (832:) . (201)
This is the ray equation.

In a 2-D application, we can rewrite the ray equation in terms of the angle & of the ray
from the z direction. First, note that

ad?:i:' = p = cos 0% + sin 8y (202)
and
d, .df o . dé
5= 071 = (— sin §% + cos 0y)E, (203)
so that
ds ~df
Vs = il + sd L (204)
which implies
- do
8-Vs= sd—l. (205)
Finally, we get
dd 1 (0s ds .
2°3 (a—y cosf — 35 &in 0) . (206)

The ray equations form the basis for shooting methods of ray tracing. Starting at any
source point, we initially choose a set of possible angles. An optimum initial span of angles
can be determined if the range of wave-speed variation is known approximately. Then,
we use the ray equations to trace the rays at each of these angles through the medium to
the vicinity of the receiver of interest. Normally none of the initial angles turns out to
be the correct one (i.e., the one that produces a ray that hits the receiver), but often the
recelver is bracketed by two of these rays. Then, by interpolation, we can find as accurate
an approximation as we like: 1i.e., choose a new set of angles between the pair that brackets
the receiver, trace the rays for these angles, keep the two closest that bracket the receiver,
and continue this process until some closeness objective has been achieved.

Shooting methods are very accurate, but also relatively expensive. We may have to
shoot many rays to achieve the desired degree of accuracy. Furthermore, there can be
pathological cases arising in inversion and tomography where it is difficult or impossible
to trace a ray from the the source to receiver through the current best estimate of the
slowness model. Such problems are most likely to occur for models containing regions
with high contrasts. Then, there can exist shadow zones behind slow regions, where ray
amplitude is small for first arrivals. Such problems can also arise due to poor choice of
modelization. Shooting methods should normally be used with smooth models based on
bilinear interpolation between grid points, or spline function approximations. If the desired
modelization uses cells of constant slowness, shooting methods are not recommended.
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6.3 The Eikonal Equation

Consider the wave equation for a field ¢(Z,t) in a medium with slowness s(Z):

82
Viy = szTat—'f' (207)
Let us assume
W(E,t) = e(#E-1) (208)

where ¢(Z) is a complex phase, the imaginary part of which determines the amplitude of
y. Substituting into the wave equation, we get

(lwVZi¢ — wiVe Vo + w?s?)y = 0. (209)
In the limit w — 0o, ¢ becomes real, since (209) implies that!®
VRé - VRp — VS - Vg = s? (210)
and
VR¢ - V&¢ =0, (211)
and the wave equation reduces to the eikonal equation
[Vo| = s. (212)

6.4 Vidale’s Method

The method of Vidale (1988) uses a finite difference scheme to compute the traveltimes of
waves in an arbitrary medium. The slowness of the medium is represented on the nodes of
a rectilinear grid with bilinear (for 2-D media) interpolation assumed between nodes. The
method approximates the wave field which propagates through a given element as a plane
wave. This approximation is valid for the far field. (A different approach is used for the
near field, but we will not cover this here.)

6.4.1 Algebraic derivation

Figure 6 shows one element of the grid. We number the nodes of the element in a coun-
terclockwise manner, starting with the lower left node. Without loss of generality, we let
the plane wave begin at node O with traveltime to, assumed known. The traveltime to the
other nodes—t;, t; and t3—will then be greater than to by an amount which depends on
the direction of propagation and the grid element size k. In general we can write the Taylor
series expansion

at
= —h
t1 to + 32" (213)
ot
to = o+ a—yh, (214)
at at
ta = = 4=
3 to + (31 + 3y) h, (215)

%94 is the real part of ¢, and ¢ is the imaginary part of ¢.
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Figure 6: Diagram of a grid element used in Vidale’s method.

valid to first order in 2. We can solve these equations for the gradient of ¢, obtaining

ot
2h6_a:

ot
2h5§

ts+t; —ta — to, (216)

ts +ty — t1 — to. (217)

The eikonal equation implies that |V¢|? = s2. If we substitute from (216) and (217) for Vit
and an element average value of g, we get

(ts+t1 — ta — to)? + (ta + tg — t;1 — to)? = 45%h?, (218)

where

1
5= Z(so + 81 + 83 + s3)- (219)

From (218), we find that the cross terms cancel so

(ts — to)® + (t1 — t3)* = 28%h%. (220)
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Figure 7: Geometry of plane wavefront incident on a grid element.

Solving for t3, we get Vidale’s formula:

ts =to + \[2§2h2 — (t1 — t2)2. (221)

We can verify (221) for two limiting cases. First, for a wave traveling in the +z direction,
we must have {; = t; and, assuming s is constant, t; = o + 3h. Substituting these into
(221) then yields t3 = to + §h, which is intuitively the correct answer. Similarly, Vidale’s
formula implies tg = to + /25h for a wave travel at 45 degrees to z, i.e., when t; = ¢t,.

6.4.2 Geometric derivation

We can gain more insight into the significance of Vidale’s method by deriving the result
another way. Now consider Fig. 7. We assume that to a first approximation it is satisfactory
to treat the slowness in the cell as constant. The constant we choose is the average of the
four grid slownesses at the corners of the cell § = 0.25(s1 + s2 + 83 + 84). If the planewave
impinges on the cell from the lower left, making angle # with the x-axis, then the simple
geometrical construction in the figure shows that the following identities must hold:

t1 — to = Shcosd, (222)
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ts — t2 = Shcos#, (223)
ts — to = §hsiné, (224)

ts — t; = 5hsiné. (225)

We see directly from Fig. 7 that the right triangle whose hypotenuse is the diagonal of the
cell and whose longest side is proportional to the time difference t3 — tg has its short side
proportional to t3 — t;. The Pythagorean theorem then tells us that

(ts — to)? + (t2 — t1)% = 25%R?, (226)
in agreement with (220) and (221). Alternatively, we see that (222)-(225) show
(ts ~ to)? + (tz2 — t1)* = 5®h%(cos 8 + sin 0)? + 5°h%(sin @ — cos 0)? = 25%h2.  (227)

From our examination of the geometry for planewaves, we get a bonus. Now we can
also find a simple estimate of the angle 8 if we know the traveltimes. Clearly,

lg—ty t3—1

tand = =
an AT T—y (228)
follows from (222)-(225). It also follows from (216) and (217) that
at/o t to—t; —t
tan 6 = [0y _tatta—t-to (229)

At/dz ~ ts+ti—ty—to’

a result that we may also infer from (222)-(225). Thus, it is possible to determine the
angle @ to first order just by knowing the traveltimes at the corners of the cell. This fact
suggests several alternatives for adding ray tracing to Vidale’s finite difference traveltime
computation, but we will not pursue that subject here.

Finally, note that (222)-(225) show that

ts =ty +t1 — to. (230)

Why is this not a useful identity for computing the traveltimes?

6.5 Bending Methods

Although in principle they can be, in practice bending methods are generally not as sys-
tematic or as accurate as shooting methods. However, they are also much less prone to
convergence failures in the presence of pathological models with high relative contrasts
(which can result in shadow zones occurring behind very slow regions). Bending methods
start with some connected path between the source and receiver (generally a straight line for
borehole-to-borehole tomography) and then use some method to reshape or bend that path
to reduce and (we hope) minimize the overall traveltime along the path. Bending methods
are conceptually based on Fermat’s principle of least time; the minimization over paths in
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(2) is being performed now essentially using trial and error. This method is just as legiti-
mate as the others discussed previously and can be just as accurate if the search routine is
sufficiently sophisticated. Also, bending methods are the only ones that I recommend using
when the model is composed of cells of constant slowness. Other methods such as shooting
take the cell boundaries in these models too seriously — trying to satisfy Snell’s law exactly
at these artificial boundaries while the approximate satisfaction of Snell’s law achieved by
the bending method using Fermat’s principle is more consistent with the approximation to
the physics embodied in the model.

6.5.1 The method of Prothero et al.

We will summarize the bending method of Prothero et al. (1988) for the case of 2-D ray
paths.

Let (zs,ys) and (zg,yr) be the given endpoints of the ray. We seek the least time
path between the two points, which we can describe with the function y(z) or z(y). (It is
assumed that one of these functions is single valued.) Let us use y(z) and, with no loss of
generality, we take zg =0, zp = L.

In ray bending, we begin with an initial ray yo(z) and seek a perturbation §y(z) to the
initial ray such that the traveltime along the perturbed ray is reduced. Typically the initial
ray is taken to be a straight line:

z z
=ys(l—= —. 231
yo(z) = ys( L) +tyry (231)
The perturbed ray is taken to be a harmonic series of the form
K
krz
Sy(z) = aj sin ——. 232
y(z) k§=:1 g sin — (232)

The order of the series is usually kept small (e.g., K = 2). Note that only sine, and not
cosine, terms are used so that the endpoints of the ray remain unperturbed.
In terms of the y(z), the traveltime is given by

t= /OL s(z,y(z))\/1+ (dy/dz)? dz. (233)

Prothero et al. (1988) use the Nelder-Mead search procedure to find coefficients a; such
that the traveltime is reduced. The Nelder-Mead approach may be used in any number of
dimensions to seek the minimum of a complicated function, especially when local gradients
of the function are difficult or expensive to compute. The main idea is to perform a sequence
of operations on an n-dimensional simplex, so that the vertices of the simplex converge on
the point where the function is minimum. In 2-D, the simplex is a triangle. The complicated
function to be minimized in our problem is the traveltime functional. Using this approach,
the traveltimes associated with three choices of the ordered pairs (a;,a;) are compared—
for example, the origin (0,0) and two other points in the ajas-plane. The point with the
largest traveltime is then replaced with a new point found as the mirror reflection of the
point about a line passing through the other two points.
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t3> t2>t1

Figure 8: Illustration of the Nelder-Mead method.

Figure 8 illustrates the method. Starting with three points whose corresponding travel-
times are respectively t; < t3 < tg, the algorithm seeks to replace the point with the largest
traveltime by a smaller traveltime t;. The figure shows the first attempt in such a process,
which is usually reflection of the triangle across the line determined by the other two vertices
of the triangle. If the traveltime associated with this point satisfies t§ < t2, then this point
becomes a point of the new triangle. If t; > t;, then other moves are made such as checking
values between the original vertex and the reflected vertex or expansion/contraction of the
triangle. When an improved (smaller traveltime) vertex is found, the vertices are relabelled
and the process starts over for the new triangle. If no improvement (or improvement less
than some preset threshold) is attained or some fixed number of iterations is exceeded, the
process terminates for this ray path.

6.5.2 Getting started

One potential pitfall of this method occurs when attempting to choose a set of vertices
for the starting triangle that avoids biasing the final results. Bias in this context means
a tendency to choose rays that bow away from the straight path in the same direction. I
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recommend always choosing the origin (a;,az) = (0,0) as one of the initial vertices, since
this choice corresponds to a straight ray path and is clearly unbiased by definition. The
straight path may be a good approximation to the true path whenever the wave speed
constrasts in the model are low. Then, how should the other two vertices be chosen?

One rather obvious pairing can be excluded immediately: Suppose that we choose the
point (a1, as) = (a, B). Then the mirror image of the path across the source /receiver line is
given by the point (a1,a2) = (—a, —8). However, rather than determining a triangle, these
three points (—a, —8),(0,0), (o, B) form a straight line in the ajas-plane. Thus, although
pairing (a, ) with (—a, —p8) is desirable from the point of view of minimizing bias, this
pairing produces an undesirable degenerate version of the triangle needed in the Nelder-
Mead algorithm. Therefore, we should exclude this possibility.

In general, we should expect the ray bending effect to be dominated by the coefficient
a;. Thus, although there clearly may be exceptions, we generally expect |a;| > |az| and
very often |a1| >> |a2|. So we try to minimize the bias in the initial choice of vertices
by pairing (a, 8) with (—a, B), where || is about an order of magnitude smaller than |a|.
This choice of pairing eliminates the major source of bias in the initial simplex while still
producing a usable triangle for the Nelder-Mead algorithm. The prtecise value to be used
for a depends on the expected range of variation (or contrast) in the wave speed in the
region being imaged. In fact, the initial choice of a for this approach is closely related to
the optimum choice of the maximum initial span of angles needed to start the shooting
methods described earlier.

6.6 Comparison

On average, the method of Prothero et al. (1988) has been found to be as fast and as accu-
rate as Vidale’s method when 100 times fewer cells are used than in Vidale’s modelization.
So the bending method is considerably more accurate on a coarser grid, but also corre-
sponding slower to compute. Vidale’s method is not as accurate as the bending method for
regions that are very slow compared to the background, due to limitations it has in or near
shadow zones. The bending method is not quite as accurate as Vidale’s method for regions
of high wave speed relative to background and comparable computing time, apparently due
to limitations of the ray parameterization embodied in (232). The hybrid approach of using
the best (smallest) traveltimes found by either method as the “true” traveltime has been
tested and gives better results than either method alone.

7 Nonlinear Seismic Tomography

The introduction of feasibility constraints into the traveltime tomography problem offers
a unique opportunity to develop a variety of new reconstruction algorithms. A few of the
ones that have been explored so far will be discussed here.

7.1 Linear and Nonlinear Programming

Linear tomography maps itself quite easily into linear programming, and nonlinear tomog-
raphy into nonlinear programming [Strang, 1986; Fiacco and McCormick, 1990].
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Recall that, if u” = (1,...,1) is an m-vector of ones and v = (1,...,1) is an n-vector
of ones, then

"M =vTC, (234)

where C is the coverage matriz, i.e., the diagonal matrix whose diagonal elements are the
column sums of the ray-path matrix. We will now define the coverage vector as

c=Cv. (235)

7.1.1 Duality

The concept of duality in linear programming leads to some useful ideas both for linear and
nonlinear traveltime tomography. (Actually it is even more useful for electrical impedance
tomography as we will see later.) We will first define the following:

Definition 7.1 The primal problem for traveltime tomography is to find the minimum of
cTs subject to Ms >t and s > 0.

Definition 7.2 The dual problem associated with the primal is to mazimize wlt subject to
wIM < cT and w > 0.

The m-vector w has no physical significance, but plays the role of a nonnegative weight
vector. One of the first consequences of this formulation is that, if we multiply the primal
inequality on the right by w” and the dual inequality on the left by s for feasible s and w,
then

cTs > wTMs > wTt. (236)
We introduce a Lagrangian functional

L(s,w) = cTs + wT(t — Ms) (237)
= (T —wM)s + wTt. (238)

An admissible (feasible) weight vector is w = u. In fact, this is the only weight vector
we need to consider because it saturates the dual inequality, producing equality in all
components following (234) and (235). Thus, the dual problem in traveltime tomography
is really trivial. We introduced it here because, despite its apparent triviality, there is one
interesting feature.

In problems with nontrivial duality structure, it is possible to obtain interesting (non-
trivial) bounds using the inequalities equivalent to (236). Here we are left with only the
condition

cTe>ult =T, (239)

which we could have derived directly from the feasibility conditions Ms > t for 8. Equa-
tion (239) is not trivial however, and can play an important role in linear and nonlinear
programming algorithms for traveltime tomography.
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7.1.2 Relaxed feasibility constraints

Given the set of observed traveltimes, t; for 1 = 1,...,m, we define two more types of
feasibility sets.

Definition 7.3 (relaxed local feasibility set) The relazed local feasibility set with re-
spect to a set of trial ray paths P = {P1,...,Pp} and observed traveltimes ty,...,ty is

R” = (s S P (s) 2 > ). (240)
=1 t=1

Definition 7.4 (relaxed global feasibility set) The relazed global feasibility set with re-
spect to a set of observed traveltimesty, ..., t,, 18

R = (13 7(6) 2 3ot} (241)
i=1

=1

Lemma 7.1 (sum of concave functions) A (nonnegatively) weighted sum of concave
functions is concave.

Proof. Let 7;(8) for ¢ = 1,...,m be a set of concave functions and let w; be a set of
nonnegative weights. Then,

iw;ﬂ(/\sl + (1 - A)Sz) > iw.‘[AT,'(Sl) + (1 — /\)T.‘(Bz)] (242)
=1 1=1

m m

=AY _wiri(81) + (1 - ) Y wiri(s2), (243)
i=1 i=1

so the weighted sum is concave. 1

Theorem 7.1 R’ is a convez set.

Theorem 7.2 R* s a convez set.

Proof. Both theorems follow from the lemma and the fact that the unit-weighted sums in
the definitions of the sets R” and R* are respectively sums of the concave functions ¥ (8)
and 77(8). 1§

Theorem 7.3 Any point s* that lies simultaneously on the boundary of both 77 and R’
solves the inversion problem.

Theorem 7.4 Any point 8* that lies simultaneously on the boundary of both ¥* and R*
solves the tnversion problem.
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Proof. The boundary of R” is determined by the single equality constraint

f:r,-P (s) = zm:t.- =T. (244)
=1 =1

The boundary of 77 is determined by the set of inequality constraints
tF(s8)>t;, forall i=1,...,m, (245)

with equality holding for at least one of the constraints. Summing (245) gives
m
doif(s) 2T, (246)
1=1

where the equality applies if and only if 77 (8) = t; for all 5. Therefore, any model s* that
satisfies both (244) and (245) must solve the inversion problem.

The proof of the second theorem follows the proof of the first, with 7*(8) replacing 7 (s)
everywhere. 1

If we have found the correct ray-path matrix for the inversion problem and the data
are noise free, then we expect that the hyperplane defined by ¢Ts = T will intersect the
feasibility boundary exactly at the point or points that solve the inversion problem. If
we have not found the correct ray-path matrix or there is uncorrelated noise in our data
t, then there will be a splitting between the hyperplane of constant total traveltime and
the feasible region. The point (or points) of closest approach between the convex feasible
set and the hyperplane may then be defined as the set of points solving the the linear
programming problem for fixed M. An iterative nonlinear programming algorithm may
then be constructed wherein the updated M is determined based on the solution of the last
linear programming problem. This procedure converges if the degree of splitting (Euclidean
distance) between the feasible set and the hyperplane of constant traveltime tends to zero
from one iteration to the next.

7.2 More about Weighted Least-Squares

We learned in previous lectures that a good set of weights to use for weighted least-squares
was L~! for the traveltime errors and C for the smoothing or regularization term in a
damped least-squares method. The arguments were based on assumptions of small devia-
tions from a constant background or on the desire to precondition the ray-path matrix so
its eigenvalues were normalized to the range —1 < A < 1.

In a sense the methods used to choose weights previously were based on linear tomog-
raphy ideas. We should now try to see if these ideas need to be modified for nonlinear
tomography. Let 8 be the latest estimate of the slowness model vector in an iterative in-
version scheme. Then, if uT = (1,...,1) is an m-vector of ones and v7 = (1,...,1) is an
n-vector of ones,

Ms = Tu, (247)
M7u = Cv = Ds, (248)
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where C is the coverage matrix (diagonal matrix containing the column sums of M) defined
previously and the two new matrices (T and D) are diagonal matrices whose diagonal
elements are T;;, the estimated traveltime for the fth ray path through the model s,

n
T.',' = E I;jSJ', (249)
ji=1
and D;; where
Dj; = Cjj/s; = 3 _kj/s;. (250)
=1

For the sake of argument, let the diagonal traveltime matrix T be the weight matrix
now, and compute the scaled least-squares point. The least-squares functional takes the
form

¥(7) = (t — M1s)"T7}(t — Mns), (251)

which has its minimum at

sTMTT-1¢

=— 25
sTMTT-'Ms (252)

7

Equation (252) can be rewritten using (247) as

ult

T uTTu’

v (253)
The factor 4 that minimizes the least-squares error is therefore the one that either increases
or decreases the total traveltime of the model s so it equals that of the data. If we assume
that the measurement errors in the traveltime data t are unbiased, then it is very reasonable
to choose models that have this property, because the total traveltime uTt = T will tend
to have smaller error (by a factor of m™2) than the individual measurements.

We see that requiring the models 8 to have the same total traveltime as the data is
equivalent to requiring that the models all lie in the hyperplane defined by

u'Ms =vTCs =cTs = T. (254)

But this is precisely the same hyperplane that arose naturally in the previous discussion of
linear and nonlinear programming.
To carry this analysis one step further, now consider the weighted least-squares problem

$u(8) = (t — Ms)TT~1(t — Ms) + p(s — 80)7D(s — 80), (255)

where we assume that the starting model s satisfies ¢cTsy = T. Then, the minimum of
(255) occurs for s, satisfying

(MTT™IM + uD)(s, ~ 80) = MTT 1 (t — Msy). (256)
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Multiplying (256) on the left by s¥, we find that
(14 p)cT (8, — 80) = uT (t — Mso) =0, (257)

so the solution of the weighted least-squares problem (256) also has the property that its
estimated total traveltime for all rays is equal to that of the data

cTs“ =cTgy=T. (258)

Our conclusion is that the particular choice of weighted least-squares problem (256)
has the unique property of holding the total estimated traveltime equal to the total of the
measured traveltimes, i.e., it constrains the least-squares solution to lie in the hyperplane
cTs = T. Assuming that the traveltime data are themselves unbiased (i.e., uTAt = 0
where At is the measurement error vector), the result 8 is an unbiased estimator of the
slowness. Moreover, this property is maintained for any value of the damping parameter u.
This result provides a connection between the linear programming approach and weighted
linear least-squares. We can now use weighted least-squares and the formula (256) in a
linear program if we like as a means of moving around in the hyperplane ¢cTs = T.

Now from our general analysis of the eigenvalue structure of weighted least-squares,
recall that (171) shows, for F = T and G = D, that we have

1> A%, 259
TiDj; — (259)

which must hold true for all values of i, 5. From (250), we have C,;/D;; = s; so

Liis; _ Liismin 2
> > A 260
oy Zomn 5 2, (260)
and from the definition of T;; we have

Ty = Zlijsj 2 LiiSmin- (261)

i=1
We conclude that this choice of weight matrices also constrains the eigenvalues to be
bounded by unity 1 > A2,

If the matrix M is very large, it may be impractical to solve (256) by inverting the
matrix (M7 T~!M + uD). Instead, we may choose to use some version of the method we
called “simple iteration” in an earlier lecture. For example, suppose that the kth iteration
yields the model vector sf,k) . Then, one choice of iteration scheme for finding the next iterate
is

Ds{+1) = Ds(®) + MTT~!(t —~ Mso) — (MTT "M + uD)(s(¥) - s0). (262)

It is not hard to show that this iteration scheme converges as long as the damping parameter
is chosen so that 0 < p < 1. 1! Furthermore, if we multiply (262) on the left by s}, we find
that

T (sl — () = (14 p)cT (s0 — s¥)). (263)

'1The reader may want to check this using the results of this subsection and the methods developed in
the lecture on simple iteration.
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Nonfeasible region

Figure 9: Snapshot of one iteration in a nonlinear tomography algorithm based on feasibility
constraints.

It follows from (263) that, if c78g = T and if sf,o) = 8¢, then

cTsf"‘) =T (264)

for all k. Thus, all the iterates stay in the hyperplane of constant traveltime. If we choose
not to iterate to convergence, then this desirable feature of the exact solution s, proven in

258) is still shared by every iterate s{¥) obtained using this scheme.
u

7.3 Stable Algorithm for Nonlinear Crosshole Tomography

Here we combine several ideas from the previous sections into an algorithm for nonlinear
tomography. We recall that such algorithms are inherently iterative. In the general iterative
algorithm posed earlier, the questionable step was how to update the current model 8 to
obtain a new model. Here we propose a method for this step [Berryman, 1989b; 1990].

Let s8(*) be the current model. An algorithm for generating the updated model s(¥+1) s
as follows:
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1. Set 8; to the scaled least-squares model:
81 = Bp5(g(h))-
2. Set 83 to the damped least-squares model with respect to s;:
82 = BLg[s, -
3. Define the family of models
8(A) = (1 — A)s; + Asy,
where A € [0,1].

4. Solve for A\*, defined so that s(\*) yields the fewest number of feasibility violations.
The number of feasibility violations is defined as the number of ray paths for which
t; > T*(S(A)).

5. If \* is less than some preset threshold (say 0.05 or 0.1), reset it to the threshold
value.

6. Set s(¥t1) = g(1*).

The algorithm is illustrated in Fig. 9. The model labeled 83 is a scaled version of 8(A*),
scaled so that 83 is on the boundary of the feasible region (7*). The iteration is stopped when
the perimeter of the triangle formed by 8;, 8; and 83 drops below a prescribed threshold.

This algorithm has been tested on several problems both with real and with synthetic
data and compared with a traditional damped least-squares algorithm (i.e., setting A* =
on each iteration). The new algorithm was found to be very stable and avoids the large
oscillations in slowness often found in traditional least-squares methods.

7.4 Using Relative Traveltimes

When we do not have control over the seismic source location and timing as in the case of
earthquakes, the absolute traveltimes are not known and it is important to understand how
relative traveltimes may be used in seismic tomography [Aki, Christoffersson, and Husebye,
1977).

Rigorous application of the feasibility constraints Ms > t requires knowledge of the
absolute traveltimes. When such information is not available, we can use the information
we have about the geology of the region to estimate the mean traveltime. Then we remove
the meaningless mean of the data 7'/m and add back in the geological mean rg.

The remove-the-mean operator R for an m-dimensional vector space is defined as

R=1- u%ur, (265)

where u = (1,...,1) is an m-vector of ones. Note that RR = R so R is a projection
operator. Then, we see that R applied to the traveltime vector t gives

Rt=t- —u, (266)
m
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where T/m = uTt/m is the mean traveltime of the data set. Applying R to the ray-path
matrix, we have

RM=M - quTC =M- uI-cT. (267)
m m

The standard procedure for this problem is to solve the equation
M's =t, (268)

where M' = RM and t' = Rt. To apply the feasibility constraints, we must modify the
problem to

Ms > Rt + rol,p. (269)

Hidden in this analysis is the fact that the earthquake sources are often far from the region
to be imaged, so the “effective” source locations may be placed at the boundaries of the
region to be imaged.

If we have predetermined the mean for the traveltime data, then it is clearly desirable
to use an inversion procedure that preserves this mean, i.e., choosing As so that

TM(s + As
uMetas)_,, (270)
m

for all As. Preserving the mean is equivalent to preserving the total traveltime along all
ray paths, so

cT(s + As) = mr. (271)

In other words, vary s so it stays in the hyperplane determined by (271). But we have
studied just this problem using linear programming (239) and also using weighted least-
squares (258). So we do not need to develop any new inversion methods for this special
case.

7.5 Parallel Computation

Traveltime tomography algorithms tend to be parallelizable in a variety of ways. The use
of the feasibility constraints only increases the degree of parallelism that is achievable by
these algorithms.

First, the forward modeling may be parallelized. If the forward problem is solved using
either shooting or bending methods, then it is straightforward to parallelize the code because
each ray may be computed independently of the others, and therefore in parallel. If the
forward problem is solved using a finite difference algorithm or a full wave equation method,
then whether the algorithm is parallelizable or not depends on the details of the particular
algorithm. For example, Vidale’s method is not parallelizable, but a recent related method
by von Trier and Symes [1991] is.

Second, the use of the feasibility constraints in inversion algorithms suggests that it
might be advantageous to map out the feasibility boundary and then use the information

57



gained to search for improved agreement between the model and the data. Mapping the
feasibility boundary can be done completely in parallel. Each model 8 may be treated in
isolation, computing the best ray-path matrix for the model, and then finding the scaled
model in the direction of 8 that intersects the feasibility boundary. The difficulty with this
method is that it requires a figure of merit (in real problems) to help us determine whether
one point on the feasibility is better than another. In ideal circumstances (no data error
and infinite precision in our computers), the figure of merit would be the number of ray
paths that achieve equality while satisfying the feasibility constraints

Ms > t. (272)

When that number equals the number of ray paths, we have found an exact solution and,
as the number increases towards this maximum value during an iterative procedure, the
trial models 8 must be converging towards this solution. But in real problems, a figure
of merit based on the number of equalities in (272) is not useful. In a series of numerical
experiments, we have found that a useful figure of merit for real problems is the nonlinear
least-squares functional

¥(s) = znj wilr}(s) — &]?. (273)
i=1

If we have found an exact solution 8* to the inversion problem, (273) will vanish at that
point on the feasibility boundary. As we approach this point, when we evaluate (273)
at an arbitrary point on the feasibility boundary and compare the values at a variety of
such points, we know from our analysis of convex programming that the points with the
smallest values of (273) are clustered in a convex set. The smallest value we find may not
be zero, in which case there is no exact solution to our inversion problem. This procedure
has been implemented on a parallel processing machine, and the results obtained using this
algorithm with the figure of merit (273) have been found to be comparable to those of the
stable algorithm discussed earlier.

8 Other Nonlinear Inversion Problems

Although traveltime tomography has been the main thrust of these lectures, I want to make
it clear that the ideas involving the feasibility constraints are very general. In fact, they
apply to any inversion problem where the data are the minima of one of the variational
problems of mathematical physics.

So in this final lecture, I will present two other inversion problems that lead to convex
feasible sets and then show the general structure required to guarantee convex global feasi-
bility. Finally, I will present another example that leads to a nonconvex feasibility set and
will discuss the consequences of this difference for computing the solution of the inverse
problem.
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Figure 10: Experimental set up for electrical impedance tomography.

8.1 Electrical Impedance Tomography

Electrical impedance tomography [Dines and Lytle, 1981; Berryman and Kohn, 1990] at-
tempts to image the electrical impedance (or just the conductivity) distribution inside a
body using electrical measurements on its boundary. See Fig. 10. The method has been
used successfully in both biomedical [Barber and Brown, 1986| and geophysical applica-
tions [Wexler, Fry, and Neuman, 1985; Daily, Lin, and Buscheck, 1987], but the analysis
of optimal reconstruction algorithms is still progressing [Yorkey, Webster, and Tompkins,
1987; Kohn and McKenney, 1990|. The most common application is monitoring the influx
or eflux of a conducting fluid (such as brine in a porous rock) through the body whose
conductivity is being imaged. This method does not have high resolving power like radi-
ological methods, but it is comparatively inexpensive and it therefore provides a valuable
alternative when continuous monitoring is desired.

First, we will review some facts about this problem that play an important role in the
analysis that follows. Recall that the power dissipated into heat is [Jackson, 1962]

pP= / 3(x) - E(x) &*z, (274)
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where

I(x) = o (x)E(x), (275)

E(x) = —-Vé(x), (276)
and the current distribution satisfies
V.J(x)=0 (277)

away from all current sources. The quantities displayed are the current distribution J, the
isotropic conductivity o, the electric field E, and the potential ¢. Substituting (275) and
(276) into (277) gives Poisson’s equation

V.(6Vg)=0. (278)
Substituting (276) into (274) and using (277), we have
P=-/J-V¢d3z=—fv-(¢a)d%. (279)
Then, the divergence theorem shows that
P= —/¢J-r‘zda, (280)

where 71 is a unit outward normal vector and da is the infinitesimal surface area on the
boundary. If current is injected through metallic electrodes, the potential takes a constant
value ¢ on the kth electrode of surface area ai. If there are K electrodes, then (280)
becomes

K
P=) ¢l (281)
k=1
where
I,,:-/ J-#da (282)
=73

is the total current injected (I, > 0) or withdrawn (I; < 0) at the kth electrode. Since
these are the only sources and sinks, we also have the sumrule

K
Y I =0. (283)
k=1

If there are only two injection electrodes, then (281) reduces to

P =(¢1 - ¢2)[1 = A, (284)
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so the power is the product of the measured potential difference A¢ across the injection
electrodes and the injected current I.

The data for electrical impedance tomography have most often been gathered by inject-
ing a measured current between two electrodes while simultaneously measuring the voltage
differences between pairs of other electrodes placed around the boundary of the body being
imaged. This process is then repeated, injecting current between all possible (generally
adjacent) pairs of electrodes, and recording the set of voltage differences for each injection
pair ¢. This data set has normally not included the voltage difference across the injection
electrodes, because these voltages cannot be measured as reliably. A substantial contact
impedance develops at the interface between the body and the injection electrodes when
large currents are present. This problem can be reduced by using large electrodes or small
currents. In this lecture, we will assume that voltage differences (and therefore the powers
dissipated) across the injection electrodes are known, but it is not necessary that they be

known to high accuracy.
Dirichlet’s principle states that, given a conductivity distribution o(x) and a potential
distribution ¢(x), the power dissipation p; realized for the ith current injection configuration

is the one that minimizes the integral [ o|V¢|?d®z so that
pi(0) = / o ()| V4 (x)|* d°z = min / o (%) |V (x)|? d°2. (285)

The trial potential field for the sth injection pair is ¢;(x), while the particular potential
field that actually minimizes the the power is ¢ (x), and this one also satisfies Poisson’s
equation V - (¢6V¢!) = 0 within the body. Furthermore, if the effective power dissipation
associated with the trial potential ¢;(x) is defined as

#%9(0) = / o (x)| Vi (x)]? d°z, (286)
then the measured powers P; must satisfy
Pi=pi(e") < 5*(0"), (287)

if *(x) is the true conductivity distribution. Note that if we vary the trial power dissipation
(286) with respect to the trial potential, we find

2/av¢- Vépdiz = —Z/V -(0V$)spd3z =0 (288)

at a stationary point. We integrated once by parts to obtain (288). Since the volume
variation §¢ is arbitrary, its coefficient inside the integral must vanish, so we just recover

Poisson’s equation, as expected.
Now we begin to see the analogy developing between the seismic traveltime tomography

problem and the electrical impedance tomography problem. If we consider the following set
of correspondences:

8(x) — o(x),
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ti(s) — pi(o),
P (s) - 5*(0),
T: - P,
dif — |Vi(x)|* d*z,

dif” — |V} (x)[* &z,

then we see that the analysis of convex functionals and feasibility sets presented for seis-
mic traveltime tomography carries over directly to the electrical impedance tomography
problem when it is formulated this way. For example, the scale invariance property holds
for electrical impedance tomography, so multiplying o by a scalar 4 does not change the
optimum potential distribution.

The feasibility constraints for electrical impedance tomography now take the form

Ké > p, (289)
where 6T = (01,...,04), PT = (p1,.-.,Pm), and the E-squared matrix is given by
K,'J' = / |V¢,|2 da:l:. (290)
Cellj

Least-squares methods may be applied to this problem in much the same fashion as in
traveltime tomography [Kallman and Berryman, 1990].

A thorough analysis of the electrical impedance tomography problem would require
another set of lectures. Lucky for you, I will not try to present them here. However, to
excite your curiosity, I will mention another feature of the electrical impedance tomography
problem not shared by the seismic tomography problem. So far we have discussed only
Dirichlet’s principle (285). In fact, there are two distinct variational principles for the
conductivity problem: Dirichlet’s principle and its dual, known as Thomson’s principle.
The second variational principle takes the form

P < / 13:(x)1? /o (x) &z, (201)

where J;(x) is a trial current distribution vector for the ith current injection pair that
satisfies the continuity equation V-J; = 0. The trial current distribution J;(x) and the trial
gradient of the potential V¢,(x) are generally unrelated except that, when the minimum
of both variational functionals is attained, then J!(x) = —oV¢;(x). Then, of course, the
current equals the conductivity times the electric field.

The existence of dual variational principles is a general property whenever the primal
variational principle is a true minimum principle. Fermat’s principle is only a stationary (not
a minimum) principle, and so traveltime tomography does not possess this dual property.
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Figure 11: Dirichlet’s principle and Thomson’s principle provide upper and lower bounds
on the dual feasibility region for electrical impedance tomography.

(If we attempt to formulate a dual for Fermat’s principle as we did in the lecture on linear
and nonlinear programming, we find the content of the dual results are essentially trivial.)
The existence of the dual variational principles for electrical impedance tomography is
important because it means that there are two independent sets of feasibility constraints
for the conductivity model o(x). Furthermore, as illustrated in Fig. 11, these two sets of
constraints allow us (in some sense) to obtain upper and lower bounds on the region of the
conductivity model space that contains the solution to the inversion problem. See Berryman
and Kohn {1990] for more discussion of this point.

8.2 Inverse Eigenvalue Problems

Inverse eigenvalue problems arise in the earth sciences during attempts to deduce earth
structure from knowledge of the modes of vibration of the earth [Dahlen, 1968; Jordan
and Anderson, 1974; Hald, 1980; Hald, 1983; Anderson and Dziewonski, 1984; McLaughlin,
1986; Dziewonski and Woodhouse, 1987; Lay, Ahrens, Olson, Smyth, and Loper, 1990].
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Consider the typical forward problem associated with the inverse eigenvalue problem
—V2u(x) + ¢(x)u(x) = Au(x) (292)

on a finite domain with some boundary conditions on u. This is known as a Sturm-Liouville
equation to mathematicians and as the Schroedinger equation to physicists. In quantum
mechanics, the time-independent wave function is given by u(x) and ¢(x) is the potential.
The eigenvalue is A.

Now it is well-known that a Rayleigh-Ritz procedure may be used to approximate the
eigenvalues A [Courant and Hilbert, 1953]. In particular, the lowest eigenvalue is given
generally by

- J(Vul? + qu?) d°z

Ao = min [ dz , (293)

where admissible us satisfy the boundary conditions of (292) and have no other constraints,

except being twice differentiable. The ratio on the right to be minimized is known as the

Rayleigh quotient, and the denominator [ u* d*z serves to normalize the wave function u.
Define the Rayleigh-quotient functional as

J(Vuil® + qu?) d°=
A(q) ul’) = f U? 43z ’

(294)

where u; is a trial wave function subject to 1 constraints. Taking the variation of A with
respect to u;, we find that the stationary points of A satisfy

= V?u; + qu; — Aq, u;)u;]bu; d°z

=0.
Tre (295)

We integrated once by parts to obtain (295) using the fact that the variations of §u vanish
on the boundary. So, since the variations du within the domain may be arbitrary, the term
in brackets must vanish and the stationary points of the Rayleigh quotient therefore occur
for u;s that satisfy (292) with A; = A(g, u;).

Clearly, we may define feasibility constraints for this problem in a manner analogous to
that for the traveltime tomography problem and for the electrical impedance tomography
problem. If the eigenvalues ); are our data, then for the correct potential ¢* we must have

i = A(g%, v [q"]) < A(q",w), (296)

where uf[q] is the eigenfunction associated with eigenvalue A; of the potential ¢g. Thus,
feasible ¢s satisfy

Ai < Ag, w) (297)

for all admissible u;s.
To show that this problem leads to a convex feasibility set, consider two potentials that
satisfy the feasibility constraints for some fixed choice of u;. Then,

A < A(ql,u.-) and A; < A(qg,u.-) (298)
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and

Ai < eA(gr,ui) + (1 — €)A(g2, us) (299)
2 2y 33

_ J(Vul® + [a}l:?_ ‘(iiz— €)gz]uj) &z (300)

= A(QG) ul')’ (301)

where the convex combination ¢ = €q; + (1 — €)g2. Thus, local (fixed u;s) feasibility follows
simply from the linearity of the Rayleigh quotient (except for the shift at the origin) with
respect to the potential ¢. Global feasibility follows from the variational properties of A
with respect to u;. (See the next subsection for the proof.)

Note that there is no scale invariance property for A similar to the one for the traveltime
functional. However, it is true that wave functions are invariant to a constant shift in the
potential, since it is easy to see that

A(g+v,u) = A(g,u) + 7. (302)

In our analysis, we can also make use of other members of the invariance group of (292)
[Ames, 1972].

This inverse eigenvalue problem can be reformulated in terms of a different set of vari-
ational functionals. In particular, one such set of generalized Rayleigh-Ritz quotients has
been constructed by Berryman [1988]; however, these functionals have a more complicated
dependence on the potential g. Without linearity or shifted linearity in ¢, we cannot prove
the convexity of the feasibility set and the structure of the inversion problem becomes less
certain and possibly more complex.

8.3 General Structure for Convex Inversion Problems

The feasibility analysis presented in these lectures applies to a wide class of inverse problems
that can be formulated so the data are minima of an appropriate variational problem. To
see the general structure, consider a set of functionals I';(g,u) of two variables ¢ and wu.
Then, if each functional is linear in one variable so that

Ti(aqq + bge,u) = aT'i(q1,u) + bTi(g2, u), (303)
and if the data ~; bound I';(g1,u) and T';(g2, u) from below for any second argument u, then
% <T(q1,u) and +4; <Ti(gq,u) foral i=1,...,m, (304)

and we have
¥ < ATi(q1,u) + (1 — A)Ti(g2, u) = Ti(Aq1 + (1 — N) g2, u). (305)

Therefore, I'; evaluated at the convex combination ¢, = Ag; + (1 — A)gz is also bounded
below by the data. Thus, linearity for fixed u is sufficient to prove that feasible gs for the
linear problem form a convex set. We call this the local convez feasibility property.

65



Then, when we consider variations of the second argument and assume that the data
are minima of the variational functional over all possible us, we have

%= Fi(q*;“'[q*]) < Fi(q*,“): (306)
where u*[g] is the particular function that minimizes the the functional I'; when ¢ is the
first argument. Then, we have

% < Ti(qr, v*{q]) < Tigr, u*[), (307)
% < Ti(gz, w’(gz]) < Ti(gz, u'[)), (308)

where u*[:] is the correct (minimizing) u for some yet to be specified ¢. Combining (307)
and (308) using the linearity property of T; for its first argument, we have

% < Ali(gr, u’{g@1]) + (1 = MTi(gz, v”[g2]) (309)
< ATi(g1,w"[]) + (1 = A)i(g2, w*["]) (310)
= Ti(gx, v’[]), (311)

where gx = Aq; + (1 — A)qz is again the convex combination of ¢; and g,. Now we are free
to choose the - to be any permissible g, so we choose it for convenience to be ¢5. Then, we
have the final result that

7 < Ti(gx, u*[ga]). (312)

The conclusion from (305) is that there are local convex feasibility sets and from (312) that
there is a global convez feastbility set for the full nonlinear inversion problem, just as in the
case for traveltime tomography.

The only properties we used were the linearity of the variational functional T; for fixed
u and the concavity of the functional that results from its variational nature.

The preceding proof is appropriate for Fermat’s, Dirichlet’s, and Thomson’s princi-
ples. However, the proof must be modified for the inverse eigenvalue problem, because the
Rayleigh quotient is a shifted linear functional of the potential g. We can fix this minor
difficulty by considering

_ Jquldiz

AA(g,w) = A(g,ui) — A(O,u) = W, (313)

which is linear in ¢. If
Ai < A(0,u) + AA(q1, 1), (314)
A < A(O, u.-) + AA(qg,u.-), (315)

then we can carry through the analysis as before and conclude that
Ai < A0, u) + AA(eqr + (1 — €)g2, u;) = A(ge, u)- (316)

This proves the local convez feasibility property for problems with variational functionals
linear in the first argument except for a constant. The proof of global convez feasibility
follows the proof already presented step by step and need not be repeated for this case.
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8.4 Nonconvex Inversion Problems with Feasibility Constraints

Although we expect the idea of using feasibility constraints in inversion problems with
variational structure to be a very general method, it may not always be the true that the
variational functional is a concave functional of its arguments. If not, then the resulting
nonlinear programming problem will not be convex.

As an example, consider the electrical impedance tomography problem again, but this
time for complex (still isotropic) conductivity ¢ = og + 1o;. The dissipative part of o is
the real part og, while the reactive part (proportional to the dielectric constant) is the
imaginary part oy.

The current is proportional to the conductivity and the electric field, but now all quan-
tities are complex so

J=0E (317)
becomes
Jr+4r=(or+ ia,)(eg + tey). (318)

The power dissipation for this problem is given by

P=%/(J-E*+J*-E)d3z (319)
= /GR'GR +ir-er)d’z (320)
= /aR(eR -ep+ey-ey) d3z. (321)

Rewriting (318) in matrix notation we have

()= o) (@) (22
Jr or OR er

Now we want to reformulate this problem as a variational principle in order to apply the
ideas of feasibility constraints, but to do so we need a positive scalar functional. The power
dissipation is a good choice again, but (322) is inconvenient for this purpose since the matrix

is not positive definite [Milton, 1990]. Performing a Legendre transform on (322), we find
that an alternative equation is

. o? o

(JR)= Rt GE Tom (?R>sz(?3>. (323)

ey —o L Jr Jr
OR on

Then, the matrix is positive definite (for o > 0), since

0 e
2(?“):)\(”“ )(R) 324
ir 0 1l/or/) \jr (324)
implies that

=2+, (325)



which guarantees that the eigenvalues A and 1/ are positive.
So now the power is given by

P:/GR°eR+j]'e])d3$ (326)
= /(eR i1 E (‘J"I“) &z (327)
= [lonlexl* + - lir - orenl’] . (328)

This is the final expression for the power. In this form, we have a valid variational principle.
Also, note that the term j; — ojerp = oger so the second term in the final expression for P
is just ogler|2.

To check the conditions for stationarity of this integral, we find that, if we vary with
respect to eg, then

2/[0’}293 - -:_—](j] - a;en)] -bep dz=o0. (329)
R
If we vary with respect to jr, we find that
1 . .
2 / [ Gr — o1er)] - 851 &z = 0. (330)
OR
Since the electric field is the gradient of a potential, (329) implies that
a1 (.
v. [aReR - —{r - a;eR)] =0. (331)
OR
Similarly, since the current distribution is divergence free, (330) implies that
1 .
—(@Gr—oregr) = -Vé¢ (332)
OR
for some scalar potential function ¢. Thus, the expression in (332) acts like an electric field
(in fact, it is ey) at the stationary point, while the quantity whose divergence is zero in
(331) acts like a current distribution (in fact, it is jg). This completes the proof that (328)
1s a legitimate variational principle for the complex conductivity problem.
We can still talk about feasibility constraints for this problem, since
F; Eﬁ.‘(a';g,d;,e;g,j;) < ﬁ;(a’;g,d;,ER,jI) (333)
with the trial power dissipation given by
. 1.
Pi(or,01,eR,j1) = /[UR|eR|2 + O_—RL]I — oreg|’] d’z. (334)
The starred quantities in (333) are the true ones for the experimental configuration. If we

can find os that violate the constraints implied by (333), then those os are infeasible and
the rest form the feasible set. However, p is not linear in its dependence on ¢, so we cannot
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prove that this functional is concave. 12 Therefore, we lack a proof of the convexity of the
feasible set.

For fixed oy, jr, and eg, the minimum of (334) is achieved, for a model of constant
conductivity cells, when the real conductivity in the jth cell is given by

fceuj Ij] - crIeR|2 dsﬂ:

2
op = (335)
T Lel,lerldz
This minimum value is
n
min g; = 2 / e 2ds:r:/- ir — orer|? d3z]3. 336
nin p J_Z_:l[ coll, [oR] 42 | gy r = orerl* &2l (336)

Since the imaginary part of the conductivity may still be viewed as a variable, we can
further minimize (336) by finding the minimum with respect to o;. This minimum occurs
when

_ fce]l,-j’ -epd’z

1= (337)
fcell,- er ' ep dsz

for the imaginary part of the conductivity in the jth cell. Substituting into (336), we have
the minimum power

OR,01

min ﬁ.-=22[/ eR-eRd3:/ jpj;dsa:—(/ j;-eRdaz)z]é. (338)
=1 Jcell; cell; cell,

It follows from the Schwartz inequality for integrals that

(/a-bdsz)zg/a-adsz/b-bdsz (339)

with equality applying only when b is proportional to a, that each bracket in (338) is
positive unless there is an exact solution such that

j1 =eg, (340)

for some scalar .

If the nonlinear programming problem is nonconvex but feasibility constraints are still
applicable, what are the consequences for numerical solution of the inversion problem? For
convex feasibility sets, the convex combination of any two points on the feasibility boundary
is also feasible and therefore either lies in the interior or on the boundary of the feasible set.
This property implies a certain degree of smoothness for the boundary itself. Clearly, if the

2Looking at (327) we see that the power is a linear functional of the matrix elements of ¥. However,
this apparent linearity unfortunately does not help the analysis, because a physical constraint on the matrix
elements is that det X = 1. It is not difficult to show that the convex combination of two matrices with
unit determinant does not preserve this property. So the nonlinearity cannot be avoided by the trick of
considering convex combinations of the matrix elements.
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feasible set is nonconvex, then the convex combination of two points on the boundary may
or may not lie in the feasible set; thus, the boundary itself may be jagged. Since the solution
of the inversion problem still lies on the boundary (just as it did in the convex case), the
lack of smoothness of the boundary may have important computational consequences: the
boundary is still expected to be continuous, of course, but sharp local jumps could occur
that might make convergence of an iterative method difficult to achieve.

As an iterative scheme progresses, the absolute minimum of the trial power (338) de-
creases towards zero. Thus, the feasibility constraints become more important for this
problem as the scheme progresses to convergence.

9 Bibliography

9.1 Cited References

Aki, K., A. Christoffersson, and E. S. Husebye, 1976, Determination of the three-dimensional
seismic structure of the lithosphere, J. Geophys. Res. 82, 277-296.

Ames, W. F., 1972, Nonlinear Partial Differential Equations in Engineering, Vol. II, Aca-
demic Press, New York, Chapter 2, 87-145.

Anderson, D. L., and A. M. Dziewonski, 1984, Seismic tomography, Scientific American
251, number 10, 60-68.

Barber, D. C., and B. H. Brown, 1986, Recent developments in applied potential tomography
— APT, in Information Processing in Medical Imaging, S. L. Bascarach (ed.), Martinus
Nijhoff, Dordrecht, 106-121.

Berryman, J. G., 1988, Bounds on decay constants for diffusion through inhomogeneous
media, J. Phys. A: Math. Gen. 21, 4423-4441.

Berryman, J. G., 1989a, Weighted least-squares criteria for seismic traveltime tomography,
IEEE Trans. Geosci. Remote Sensing 27, 302-309.

Berryman, J. G., 1989b, Fermat’s principle and nonlinear traveltime tomography, Phys.
Rev. Lett. 62, 2953-2956.

Berryman, J. G., 1990, Stable iterative reconstruction algorithm for nonlinear traveltime
tomography, Inverse Problems 6, 21-42.

Berryman, J. G., 1991, Convexity properties of inverse problems with variational con-
straints, J. Franklin Inst., to appear.

Berryman, J. G. and R. V. Kohn, 1990, Variational constraints for electrical impedance
tomography, Phys. Rev. Lett. 65, 325-328.

Burkhard, N. R., 1980, Resolution and error of the back projection technique algorithm for
geophysical tomography, Lawrence Livermore National Laboratory preprint, UCRL-
52984.

70



Courant, R., and D. Hilbert, 1953, Methods of Mathematical Physics, Vol. 1, Wiley, New
York, 132-134.

Dahlen, F. A., 1968, The normal modes of a rotating elliptical earth, Geophys. J. R. Astron.
Soc. 16, 329-367.

Daily, W., W. Lin, and T. Buscheck, 1987, Hydrological properties of Topopah Spring tuff:
Laboratory measurements, J. Geophys. Res. 92, 7854-7864.

Devaney, A. J., 1984, Geophysical diffraction tomography, IJEEE Trans. Geosci. Remote
Sensing 22, 3-13.

Dines, K. A., and R. J. Lytle, 1981, Analysis of electrical conductivity imaging, Geophysics
46, 1025-1036.

Dziewonski, A. M., and J. H. Woodhouse, 1987, Global images of the earth’s interior, Science
236, 3740.

Feynman, R. P., R. B. Leighton, and M. Sands, 1963, The Feynman Lectures on Physics,
Vol. I, Addison-Wesley, Reading, Massachusetts, Chapter 26.

Fiacco, A. V. and G. P. McCormick, 1990, Nonlknear Programming: Sequential Uncon-
strained Minimization Techniques, SIAM, Philadelphia, Chapter 6, 86-112.

Frank, M., and C. A. Balanis, 1989, Methods for improving the stability of electromagnetic
geophysical inversions, IEEE Trans. Geosci. Remote Sens. 27, 339-343.

Hald, O. H., 1980, Inverse eigenvalue problems for the mantle, Geophys. J. R. Astron. Soc.
62, 41-48.

Hald, O. H., 1983, Inverse eigenvalue problems for the mantle — II, Geophys. J. R. Astron.
Soc. 72, 139-164.

Hardy, G. H., J. E. Littlewood, and G. Pélya, 1934, Inequalities, Cambridge University
Press, Cambridge, 70-101.

Herman, G. T., 1980, Image Reconstruction from Projections - The Fundamentals of Com-
puterized Tomography, Academic, New York, Chapter 6, 100-107.

Hestenes, M. R., and E. Stiefel, 1952, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Stan. B 49, 409-436.

Jackson, J. D., 1962, Classical Electrodynamics, Wiley, New York, 189-190.

Jeffrey, W., and R. Rosner, 1986a, On strategies for inverting remote sensing data, Astro-
phys. J. 310, 463-472.

Jeffrey, W., and R. Rosner, 1986b, Optimization algorithms: Simulated annealing and neural
network processing, Astrophys. J. 310, 473-481.

71



Jordan, T. H., and D. L. Anderson, 1974, Earth structure from free oscillations and travel
times, Geophys. J. R. Astr. Soc. 36, 411-459.

Kallman, J. S., and J. G. Berryman, 1990, Weighted least-squares criteria for electrical
impedance tomography, Lawrence Livermore National Laboratory, preprint, UCRL-
JC-106000.

Kohn, R. V., and A. McKenney, 1990, Numerical implementation of a variational method
for electrical impedance tomography, Inverse Problems 6, 389414,

Ladas, K. T., and A. J. Devaney, 1991, Generalized ART algorithm for diffraction tomog-
raphy, Inverse Problems, submitted.

Lanczos, C., 1961, Linear Differential Operators, Van Nostrand, New York, Chapter 3, 100~
162.

Lay, T., T. J. Ahrens, P. Olson, J. Smyth, and D. Loper, 1990, Studies of the earth’s deep
interior: Goals and trends, Phys. Today 43, number 10, 44-52.

Lo, T-W., G. L. Duckworth, and M. N. Tokséz, 1990, Minimum cross entropy seismic
diffraction tomography, J. Acoust. Soc. Am. 87, T48-756.

Lu, S.-Y., and J. G. Berryman, 1991, Inverse scattering, seismic traveltime tomography,
and neural networks, Intern. J. Imaging Sys. Tech. 3, to appear February, 1991.

Lytle, R. J., and K. A. Dines, 1980, Iterative ray tracing between boreholes for underground
image reconstruction, IEEE Trans. Geosci. Remote Sens. 18, 234-240.

McLaughlin, J. R., 1986, Analytical methods for recovering coefficients in differential equa-
tions from spectral data, STAM Rev. 28, 53-72.

Milton, G. W., 1990, On characterizing the set of possible effective tensors of composites:
The variational method and the translation method, Commun. Pure Appl. Math. 43,
63-125 (see Section 16).

Nelder, J. A., and R. Mead, 1965, A simplex method for function minimization, Computer
J. 7, 308-313.

Penrose, R., 1955a, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51,
406-413.

Penrose, R., 1955b, On best approximation solutions of linear matrix equations, Proc. Cam-
bridge Philos. Soc. 52, 17-19.

Prothero, W. A., W. J. Taylor, and J. A. Eickemeyer, 1988, A fast, two-point, three-
dimensional raytracing algorithm using a simple step search method, Bull. Seismol.
Soc. Am. 78, 1190-1198.

Strang, G., 1986, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Welles-
ley, MA, Chapter 8, 665-734.

72



Tabbara, W., B. Duchéne, Ch. Pichot, D. Lesselier, L. Chommeloux, and N. Joachimowicz,
1988, Diffraction tomography: Contribution to the analysis of some applications in
microwaves and ultrasonics, Inverse Problems 4, 305-331.

van Trier, J., and W. W. Symes, 1991, Upwind finite-difference calculation of traveltimes,
Geophysics, submitted.

Vidale, J. E., 1988, Finite-difference calculation of travel time, Bull. Seismol. Soc. Am. T8,
2062-2076.

Vidale, J. E., 1990, Finite-difference calculation of travel time in 3-D, Geophysics 65, 521—
526.

Wexler, A., B. Fry, and M. R. Neuman, 1985, Impedance-computed tomography algorithm
and system, Appl. Opt. 24, 3985-3992.

Whitham, G. B., 1974, Linear and Nolinear Waves, Wiley, New York, Chapters 7, 11 and
14.

Wuy, R. S., and M. N. Toksoz, 1987, Diffraction tomography and multi-source holography
applied to seismic imaging, Geophystcs 52, 11-25.

Yorkey, T. J., J. G. Webster, and W. J. Tompkins, 1987, Comparing reconstruction algo-
rithms for electrical impedance tomography, IEEE Trens. Biomed. Engng. 34, 843-852.

9.2 General References

Aki, K., and P. G. Richards, Quantitative Seismology: Theory and Methods, Vol. II, Freeman,
New York, Chapter 12.

Ammon, C.J,, G. E. Randall, and G. Zandt, 1990, On the nonuniqueness of receiver function
inversions, J. Geophys. Res. 95, 15303-15318.

Beylkin, G., 1984, The inversion problem and applications of the generalized Radon trans-
form, Commun. Pure Appl. Math. 37, 579-599.

Bois, P., M. La Porte, M. Lavergne, and G. Thomas, 1972, Well-to-well seismic measure-
ments, Geophysics 37, 471-480.

Chen, S. T., L. J. Zimmerman, and J. K. Tugnait, 1990, Subsurface imaging using reversed
vertical seismic profiling and crosshole tomographic methods, Geophysics 55, 1478-
1487.

Colton, D., R. Ewing, and W. Rundell (eds.), 1990, Inverse Problems in Partial Differential
Equations, SIAM, Philadelphia.

Cottle, R. W., and C. E. Lemke (eds.), 1976, Nonlinear Programming, SIAM-AMS Proceed-
ings, Volume IX, Am. Math. Soc., Providence, RI.

73



Daudt, C. R., L. W. Braile, R. L. Nowack, and C. S. Chiang, 1989, A comparison of finite-
difference and Fourier method calculation of synthetic seismograms, Bull. Seismol. Soc.
Am. 79, 1210-1230.

Evans, J. R., and J. J. Zucca, 1988, Active high-resolution seismic tomography of com-
pressional wave velocity and attenuation structure at Medicine Lake Volcano, Northern
California Cascade Range, J. Geophys. Res. 93, 15016-15036.

Ewing, W. M., W. S. Jardetzky, and F. Press, 1957, Elastic Waves in Layered Media,
McGraw-Hill, New York.

Gisser, D. G., D. Isaacson, and J. C. Newell, 1988, Theory and performance of an adaptive
current tomography system, Clin. Phys. Physiol. Meas. 9A, 35-41.

Griinbaum, F. A., 1980, A study of Fourier space methods for “limited angle” image recon-
struction, Numer. Funct. Anal. Optimiz. 2, 31-42.

Henderson, R. P., and J. G. Webster, 1978, An impedance camera for spatially specific
measurements of the thorax, JEEE Trans. Biomed. Engng. 25, 250-254.

Ivansson, S., 1983, Remark on an earlier proposed iterative tomographic algorithm, Geophys.
J. R. Astron. Soc. 75, 855-860.

Jackson, D. D., 1972, Interpretation of inaccurate, insufficient and inconsistent data, Geo-
phys. J. R. Astr. Soc. 28, 97-109.

Jordan, T. H., and J. N. Franklin, 1971, Optimal solutions to a linear inverse problem in
geophysics, Proc. Nat. Acad. Sci. 68, 291-293.

Justice, J. H., A. A. Vassiliou, S. Singh, J. D. Logel, P. A. Hansen, B. R. Hall, P. R. Hutt,
and J. J. Solanski, 1989, Tomographic imaging in hydrocarbon reservoirs, J. Imaging
Sys. Tech. 1, 62-T2.

Kak, A. C., 1984, Image reconstruction from projections, in Digital Image Processing Tech-
niques, M. P. Ekstrom (ed.), Academic, New York, Chapter 4, 111-170.

Louis, A. K., 1981, Ghosts in tomography — The null space of the Radon transform, Math.
Meth. Appl. Sci. 3, 1-10.

Luenberger, D. G., 1969, Optimization by Vector Space Methods, Wiley, New York, Chapters
6 and 10, 160-168, 283-297.

Luenberger, D. G., 1973, Introduction to Linear and Nonlinear Programming, Addison-
Wesley, Reading Massachusetts, Chapters 7 and 8, 148-155, 168-186.

McMechan, G. A.; J. M. Harris, and L. M. Anderson, 1987, Crosshole tomography for
strongly variable media with applications to scale model data, Bull. Seismol. Soc. Am.
77, 1945-1960.

Natterer, F., 1986, The Mathematics of Computerized Tomography, Wiley, New York.

74



Nelson, G. D., and J. E. Vidale, 1990, Earthquake locations by 3-D finite-difference travel
times, Bull. Seismol. Soc. Am. 80, 395-410.

Nolet, G. (ed.), 1987, Seismic Tomography: With Applications in Global Seismology and
Ezploration Geophysics, Reidel, Dordrecht.

Scales, J. A., A. Gersztenkorn, and S. Treitel, 1988, Fast [, solution of large, sparse, linear
systems: Application to seismic travel time tomography, J. Comput. Phys. 75, 314-333.

Smith, K. T., D. C. Solmon, and S. L. Wagner, 1977, Practical and mathematical aspects
of the problem of reconstructing objects from radiographs, Bull. Am. Math. Soc. 83,
1227-1270.

Tarantola, A., and A. Nercessian, 1984, Three-dimensional inversion without blocks, Geo-
phys. J. R. Astron. Soc. 76, 299-306.

Tarantola, A., and B. Valette, 1982, Generalized nonlinear inverse problems solved using
the least squares criterion, Rev. Geophys. Space Phys. 20, 219-232.

Vidale, J. E., and H. Houston, 1990, Rapid calculation of seismic amplitudes, Geophysics
55, 1504-1507.

Witten, A. J., and E. Long, 1986, Shallow applications of geophysical diffraction tomogra-
phy, IEEE Trans. Geosci. Remote Sens. 24, 654-662.

Zandt, G., 1981, Seismic images of the deep structure of the San Andreas fault system,
Central Coast Ranges, California, J. Geophys. Res. 86, 5039-5052.

Zucca, J. J., G. S. Fuis, B. Milkereit, W. D. Mooney, and R. D. Catchings, 1986, Crustal
structure of Northeastern California, J. Geophys. Res. 91, 7359-7382.

75



